Closed jeongjae96 closed 1 year ago
.txt
extension.Object information per row: Each row contains the following information about the object instance:
The format for a single row in the detection dataset file:
<object-class> <x_normalized btw 0 and 1> <y_normalized btw 0 and 1> <width_normalized btw 0 and 1> <height_normalized btw 0 and 1>
e.g.
0 0.5 0.4 0.3 0.6
1 0.3 0.7 0.4 0.2
Uses a YAML
file format to define the dataset and model configuration for training.
example of the YAML format used for defining a detection dataset
train: <path-to-training-images>
val: <path-to-validation-images>
nc: <number-of-classes>
names: [<class-1>, <class-2>, ..., <class-n>] # The order of the names should match the order of the object class indices in the YOLO dataset files.
Either nc
or names
must be defined. Defining both are not mandatory.
Alternatively, it is possible to define class names like following:
names:
0: person
1: bicycle
e.g.
train: data/train/
val: data/val/
nc: 2
names: ['person', 'car']
JSON2YOLO를 통해 COCO format으로 변환 가능하지만, COCO dataset에 맞춰 category id를 1씩 빼준다. 우리 데이터셋은 category id가 0부터 시작해 유의해야 한다.
convert2Yolo도 YOLO format으로 변환 가능할 것으로 보인다.
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from ultralytics.yolo.utils.downloads import download
from pathlib import Path
# Download labels
segments = True # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
확인했슴다! 참고해서 작업 진행하겠습니다.
yolov7에서는 data yaml에서 path
를 인식하지 못해 에러가 발생했다. yaml 파일 수정 및 전체 train 데이터의 이미지 정보가 담긴 txt 파일과 그 정보를 담는 yaml 파일 생성이 필요하다. 추가로, validation set이 필수로 들어가야하므로 sample validation txt도 필요하다.
Description
10 을 위한 데이터 포맷 변환 구현을 해야 합니다. 용량 낭비를 막기 위해 추가로 이미지 경로를 만드는 대신 txt만으로 구분할 수 있도록 구현 예정입니다.
Tasks