Closed yqqqqqq closed 5 years ago
Your log file is not complete. The best iteration is not the last epoch but the epoch with the best development performance.
代码中不是把产生最好的f1值的训练的模型保存下来了吗?比如最后一个保存的是saved_model.43.model,the 43 epoch 是 the best development performance?
Yes, so you need to see the epoch of best development performance rather the last epoch.
I know, I saw the epoch of best development performance is the 34 epoch, and I run sh.run_mainweibo.sh (status is decode), but I only got the F1 value of 51.77. The result is 53.04 in your paper. The results are as follows: GPU available: True Status: decode Seg: True Train file: data/conll03/train.bmes Dev file: data/conll03/dev.bmes Test file: data/conll03/test.bmes Raw file: ./WeiboNER/test.ne.bmes Char emb: data/gigaword_chn.all.a2b.uni.ite50.vec Bichar emb: None Gaz file: data/ctb.50d.vec Data setting loaded from file: ./WeiboNER/saved_model.ne.dset DATA SUMMARY START: Tag scheme: BMES MAX SENTENCE LENGTH: 250 MAX WORD LENGTH: -1 Number normalized: True Use bigram: False Word alphabet size: 3357 Biword alphabet size: 42647 Char alphabet size: 3357 Gaz alphabet size: 13671 Label alphabet size: 16 Word embedding size: 50 Biword embedding size: 50 Char embedding size: 30 Gaz embedding size: 50 Norm word emb: True Norm biword emb: True Norm gaz emb: False Norm gaz dropout: 0.5 Train instance number: 0 Dev instance number: 0 Test instance number: 0 Raw instance number: 0 Hyperpara iteration: 100 Hyperpara batch size: 1 Hyperpara lr: 0.015 Hyperpara lr_decay: 0.05 Hyperpara HP_clip: 5.0 Hyperpara momentum: 0 Hyperpara hidden_dim: 200 Hyperpara dropout: 0.5 Hyperpara lstm_layer: 1 Hyperpara bilstm: True Hyperpara GPU: True Hyperpara use_gaz: True Hyperpara fix gaz emb: False Hyperpara use_char: False DATA SUMMARY END. Load Model from file: ./WeiboNER/saved_model.ne.34.model build batched lstmcrf... build batched bilstm... build LatticeLSTM... forward , Fix emb: False gaz drop: 0.5 load pretrain word emb... (13671, 50) build LatticeLSTM... backward , Fix emb: False gaz drop: 0.5 load pretrain word emb... (13671, 50) build batched crf... Decode raw data ... gold_num = 216 pred_num = 151 right_num = 95 raw: time:23.52s, speed:11.49st/s; acc: 0.9691, p: 0.6291, r: 0.4398, f: 0.5177 Predict raw result has been written into file. ./WeiboNER/raw_wb.ne.out
Then you can try to set 'data. norm_word_emb' as False or use a different random seed. The weibo dataset is too small which leads the result unstable.
OK, thank you so much!
Sorry to interrupt you again.Can you teach me how to modify the code to reproduce the result of char baseline +bichar +softword model?Thanks!
58.79是最优结果吗,为什么我会跑出59.21的数据
weibo log: CuDNN: True GPU available: True Status: train Seg: True Train file: WeiboNER/train.ne.bmes Dev file: WeiboNER/dev.ne.bmes Test file: WeiboNER/test.ne.bmes Raw file: None Char emb: data/gigaword_chn.all.a2b.uni.ite50.vec Bichar emb: None Gaz file: data/ctb.50d.vec Model saved to: WeiboNER/saved_model.all Load gaz file: data/ctb.50d.vec total size: 704368 gaz alphabet size: 10798 gaz alphabet size: 12235 gaz alphabet size: 13671 build word pretrain emb... Embedding: pretrain word:11327, perfect match:3281, case_match:0, oov:75, oov%:0.0223413762288 build biword pretrain emb... Embedding: pretrain word:0, perfect match:0, case_match:0, oov:42646, oov%:0.999976551692 build gaz pretrain emb... Embedding: pretrain word:704368, perfect match:13669, case_match:0, oov:1, oov%:7.31475385853e-05 Training model... DATA SUMMARY START: Tag scheme: BMES MAX SENTENCE LENGTH: 250 MAX WORD LENGTH: -1 Number normalized: True Use bigram: False Word alphabet size: 3357 Biword alphabet size: 42647 Char alphabet size: 3357 Gaz alphabet size: 13671 Label alphabet size: 16 Word embedding size: 50 Biword embedding size: 50 Char embedding size: 30 Gaz embedding size: 50 Norm word emb: True Norm biword emb: True Norm gaz emb: False Norm gaz dropout: 0.5 Train instance number: 1350 Dev instance number: 270 Test instance number: 270 Raw instance number: 0 Hyperpara iteration: 100 Hyperpara batch size: 1 Hyperpara lr: 0.015 Hyperpara lr_decay: 0.05 Hyperpara HP_clip: 5.0 Hyperpara momentum: 0 Hyperpara hidden_dim: 200 Hyperpara dropout: 0.5 Hyperpara lstm_layer: 1 Hyperpara bilstm: True Hyperpara GPU: True Hyperpara use_gaz: True Hyperpara fix gaz emb: False Hyperpara use_char: False DATA SUMMARY END. Data setting saved to file: WeiboNER/saved_model.all.dset build batched lstmcrf... build batched bilstm... build LatticeLSTM... forward , Fix emb: False gaz drop: 0.5 load pretrain word emb... (13671, 50) ... ... ... Epoch: 98 training finished. Time: 379.70s, speed: 3.56st/s, total loss: 638.227500916 gold_num = 169 pred_num = 138 right_num = 83 Dev: time: 23.04s, speed: 11.73st/s; acc: 0.9752, p: 0.6014, r: 0.4911, f: 0.5407 gold_num = 216 pred_num = 140 right_num = 94 Test: time: 23.75s, speed: 11.38st/s; acc: 0.9706, p: 0.6714, r: 0.4352, f: 0.5281 Epoch: 99/100 Learning rate is setted as: 9.34820403211e-05 Instance: 500; Time: 138.24s; loss: 222.6014; acc: 26713.0/26857.0=0.9946 Instance: 1000; Time: 143.49s; loss: 236.1890; acc: 54543.0/54865.0=0.9941 Instance: 1350; Time: 98.02s; loss: 162.5528; acc: 73351.0/73778.0=0.9942 Epoch: 99 training finished. Time: 379.75s, speed: 3.55st/s, total loss: 621.343292236 gold_num = 169 pred_num = 139 right_num = 83 Dev: time: 23.04s, speed: 11.73st/s; acc: 0.9748, p: 0.5971, r: 0.4911, f: 0.5390 gold_num = 216 pred_num = 142 right_num = 94 Test: time: 23.48s, speed: 11.51st/s; acc: 0.9705, p: 0.6620, r: 0.4352, f: 0.5251 问题出在哪?在overall上的值也没有达到文中的58.79%,只有56点几的