jmaih / RISE_toolbox

Solution and estimation of Markov Switching Rational Expectations / DSGE Models
BSD 3-Clause "New" or "Revised" License
105 stars 78 forks source link

the problems of trials and singularity #137

Closed 55Kidd closed 4 years ago

55Kidd commented 4 years ago

Dear Junior Maih: Is the result reliable with only 2 trials?Could you please tell me how to deal with the problems of trials and singularity? Here is my code: 1.zip Many thanks! Kidd June 26, 2020

jmaih commented 4 years ago

I was able to perform the following estimation using a different optimizer. fmincon is not a good enough optimizer for your problem. Consider for instance using the following results as initial conditions in your estimation problem.

` MODEL ESTIMATION RESULTS distribution initval mode mode_std


g            BETA            0.65       0.91646    0.0080197
ksi          GAMMA              3         3.049     0.057617
fai_k        GAMMA             60        96.173       20.264
rho_am       BETA             0.6       0.97439      0.10356
sig_am       INV_GAMMA       5.09        1.8185       0.1138
fai_p        GAMMA             60        102.36       24.083
re           BETA             0.8       0.68121      0.11456
de_g         BETA             0.3       0.29756     0.073699
de_d         BETA             0.3       0.29638     0.074403
rho_o        BETA             0.6       0.77455      0.10562
sig_o        INV_GAMMA       9.81        8.3267      0.83134
rho_ao       BETA             0.6       0.69619     0.097327
sig_ao       INV_GAMMA        6.3        5.9955      0.26672
rho_tao      BETA             0.6       0.95831       0.0567
omega_y      GAMMA            0.5       0.55896      0.15041
omega_pai    GAMMA            1.5         3.001      0.83377
omega_r      GAMMA            0.5       0.38651      0.13968
sig_tao      INV_GAMMA         10        7.9058      0.51555
             ____________    _______    _______    _________

             distribution    initval     mode      mode_std 

log-post: -354.7995 log-lik: -309.4384 log-prior: -45.3611 log-endog_prior 0.0000 numberOfActiveInequalities 0 log-MDD(Laplace) -386.0387868 estimation sample is: 1996Q1 : 2015Q4 (80 observations) solution algorithm is: rise_1 estimation algorithm is: bee_gate number of estimated parameters is: 18 number of function evaluations is: 32806 `