joe-siyuan-qiao / DetectoRS

DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
Apache License 2.0
1.14k stars 176 forks source link

The problem is “The model and loaded state dict do not match exactly” #63

Open Wenting-Xu opened 4 years ago

Wenting-Xu commented 4 years ago

Thanks for your error report and we appreciate it a lot.

Checklist

  1. I have searched related issues but cannot get the expected help.
  2. The bug has not been fixed in the latest version.

Describe the bug I train my dataset as coco formI can properly train myself for data sets in coco format.bue i got an warming Reproduction

  1. Did you make any modifications on the code or config? Did you understand what you have modified? i just change num_classes

  2. What dataset did you use? my own dataset as coco format.it contain 21 classes Environment

  3. Please run python mmdet/utils/collect_env.py to collect necessary environment infomation and paste it here. sys.platform: linux Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0] CUDA available: True CUDA_HOME: /usr/local/cuda-10.1 NVCC: Cuda compilation tools, release 10.1, V10.1.243 GPU 0,1,2,3: Tesla V100-DGXS-32GB GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0 PyTorch: 1.4.0 PyTorch compiling details: PyTorch built with:

    • GCC 7.3
    • Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
    • Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc)
    • OpenMP 201511 (a.k.a. OpenMP 4.5)
    • NNPACK is enabled
    • CUDA Runtime 10.0
    • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
    • CuDNN 7.6.3
    • Magma 2.5.1
    • Build settings: BLAS=MKL, BUILD_NAMEDTENSOR=OFF, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Wno-stringop-overflow, DISABLE_NUMA=1, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,

TorchVision: 0.5.0 OpenCV: 4.3.0 MMCV: 1.0.4 MMDetection: 1.1.0+unknown MMDetection Compiler: GCC 7.4 MMDetection CUDA Compiler: 10.1

Error traceback If applicable, paste the error trackback here.

2020-07-27 09:29:04,833 - mmdet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: layer3.6.conv1.weight, layer3.6.bn1.weight, layer3.6.bn1.bias, layer3.6.bn1.running_mean, layer3.6.bn1.running_var, layer3.6.conv2.weight, layer3.6.bn2.weight, layer3.6.bn2.bias, layer3.6.bn2.running_mean, layer3.6.bn2.running_var, layer3.6.conv3.weight, layer3.6.bn3.weight, layer3.6.bn3.bias, layer3.6.bn3.running_mean, layer3.6.bn3.running_var, layer3.7.conv1.weight, layer3.7.bn1.weight, layer3.7.bn1.bias, layer3.7.bn1.running_mean, layer3.7.bn1.running_var, layer3.7.conv2.weight, layer3.7.bn2.weight, layer3.7.bn2.bias, layer3.7.bn2.running_mean, layer3.7.bn2.running_var, layer3.7.conv3.weight, layer3.7.bn3.weight, layer3.7.bn3.bias, layer3.7.bn3.running_mean, layer3.7.bn3.running_var, layer3.8.conv1.weight, layer3.8.bn1.weight, layer3.8.bn1.bias, layer3.8.bn1.running_mean, layer3.8.bn1.running_var, layer3.8.conv2.weight, layer3.8.bn2.weight, layer3.8.bn2.bias, layer3.8.bn2.running_mean, layer3.8.bn2.running_var, layer3.8.conv3.weight, layer3.8.bn3.weight, layer3.8.bn3.bias, layer3.8.bn3.running_mean, layer3.8.bn3.running_var, layer3.9.conv1.weight, layer3.9.bn1.weight, layer3.9.bn1.bias, layer3.9.bn1.running_mean, layer3.9.bn1.running_var, layer3.9.conv2.weight, layer3.9.bn2.weight, layer3.9.bn2.bias, layer3.9.bn2.running_mean, layer3.9.bn2.running_var, layer3.9.conv3.weight, layer3.9.bn3.weight, layer3.9.bn3.bias, layer3.9.bn3.running_mean, layer3.9.bn3.running_var, layer3.10.conv1.weight, layer3.10.bn1.weight, layer3.10.bn1.bias, layer3.10.bn1.running_mean, layer3.10.bn1.running_var, layer3.10.conv2.weight, layer3.10.bn2.weight, layer3.10.bn2.bias, layer3.10.bn2.running_mean, layer3.10.bn2.running_var, layer3.10.conv3.weight, layer3.10.bn3.weight, layer3.10.bn3.bias, layer3.10.bn3.running_mean, layer3.10.bn3.running_var, layer3.11.conv1.weight, layer3.11.bn1.weight, layer3.11.bn1.bias, layer3.11.bn1.running_mean, layer3.11.bn1.running_var, layer3.11.conv2.weight, layer3.11.bn2.weight, layer3.11.bn2.bias, layer3.11.bn2.running_mean, layer3.11.bn2.running_var, layer3.11.conv3.weight, layer3.11.bn3.weight, layer3.11.bn3.bias, layer3.11.bn3.running_mean, layer3.11.bn3.running_var, layer3.12.conv1.weight, layer3.12.bn1.weight, layer3.12.bn1.bias, layer3.12.bn1.running_mean, layer3.12.bn1.running_var, layer3.12.conv2.weight, layer3.12.bn2.weight, layer3.12.bn2.bias, layer3.12.bn2.running_mean, layer3.12.bn2.running_var, layer3.12.conv3.weight, layer3.12.bn3.weight, layer3.12.bn3.bias, layer3.12.bn3.running_mean, layer3.12.bn3.running_var, layer3.13.conv1.weight, layer3.13.bn1.weight, layer3.13.bn1.bias, layer3.13.bn1.running_mean, layer3.13.bn1.running_var, layer3.13.conv2.weight, layer3.13.bn2.weight, layer3.13.bn2.bias, layer3.13.bn2.running_mean, layer3.13.bn2.running_var, layer3.13.conv3.weight, layer3.13.bn3.weight, layer3.13.bn3.bias, layer3.13.bn3.running_mean, layer3.13.bn3.running_var, layer3.14.conv1.weight, layer3.14.bn1.weight, layer3.14.bn1.bias, layer3.14.bn1.running_mean, layer3.14.bn1.running_var, layer3.14.conv2.weight, layer3.14.bn2.weight, layer3.14.bn2.bias, layer3.14.bn2.running_mean, layer3.14.bn2.running_var, layer3.14.conv3.weight, layer3.14.bn3.weight, layer3.14.bn3.bias, layer3.14.bn3.running_mean, layer3.14.bn3.running_var, layer3.15.conv1.weight, layer3.15.bn1.weight, layer3.15.bn1.bias, layer3.15.bn1.running_mean, layer3.15.bn1.running_var, layer3.15.conv2.weight, layer3.15.bn2.weight, layer3.15.bn2.bias, layer3.15.bn2.running_mean, layer3.15.bn2.running_var, layer3.15.conv3.weight, layer3.15.bn3.weight, layer3.15.bn3.bias, layer3.15.bn3.running_mean, layer3.15.bn3.running_var, layer3.16.conv1.weight, layer3.16.bn1.weight, layer3.16.bn1.bias, layer3.16.bn1.running_mean, layer3.16.bn1.running_var, layer3.16.conv2.weight, layer3.16.bn2.weight, layer3.16.bn2.bias, layer3.16.bn2.running_mean, layer3.16.bn2.running_var, layer3.16.conv3.weight, layer3.16.bn3.weight, layer3.16.bn3.bias, layer3.16.bn3.running_mean, layer3.16.bn3.running_var, layer3.17.conv1.weight, layer3.17.bn1.weight, layer3.17.bn1.bias, layer3.17.bn1.running_mean, layer3.17.bn1.running_var, layer3.17.conv2.weight, layer3.17.bn2.weight, layer3.17.bn2.bias, layer3.17.bn2.running_mean, layer3.17.bn2.running_var, layer3.17.conv3.weight, layer3.17.bn3.weight, layer3.17.bn3.bias, layer3.17.bn3.running_mean, layer3.17.bn3.running_var, layer3.18.conv1.weight, layer3.18.bn1.weight, layer3.18.bn1.bias, layer3.18.bn1.running_mean, layer3.18.bn1.running_var, layer3.18.conv2.weight, layer3.18.bn2.weight, layer3.18.bn2.bias, layer3.18.bn2.running_mean, layer3.18.bn2.running_var, layer3.18.conv3.weight, layer3.18.bn3.weight, layer3.18.bn3.bias, layer3.18.bn3.running_mean, layer3.18.bn3.running_var, layer3.19.conv1.weight, layer3.19.bn1.weight, layer3.19.bn1.bias, layer3.19.bn1.running_mean, layer3.19.bn1.running_var, layer3.19.conv2.weight, layer3.19.bn2.weight, layer3.19.bn2.bias, layer3.19.bn2.running_mean, layer3.19.bn2.running_var, layer3.19.conv3.weight, layer3.19.bn3.weight, layer3.19.bn3.bias, layer3.19.bn3.running_mean, layer3.19.bn3.running_var, layer3.20.conv1.weight, layer3.20.bn1.weight, layer3.20.bn1.bias, layer3.20.bn1.running_mean, layer3.20.bn1.running_var, layer3.20.conv2.weight, layer3.20.bn2.weight, layer3.20.bn2.bias, layer3.20.bn2.running_mean, layer3.20.bn2.running_var, layer3.20.conv3.weight, layer3.20.bn3.weight, layer3.20.bn3.bias, layer3.20.bn3.running_mean, layer3.20.bn3.running_var, layer3.21.conv1.weight, layer3.21.bn1.weight, layer3.21.bn1.bias, layer3.21.bn1.running_mean, layer3.21.bn1.running_var, layer3.21.conv2.weight, layer3.21.bn2.weight, layer3.21.bn2.bias, layer3.21.bn2.running_mean, layer3.21.bn2.running_var, layer3.21.conv3.weight, layer3.21.bn3.weight, layer3.21.bn3.bias, layer3.21.bn3.running_mean, layer3.21.bn3.running_var, layer3.22.conv1.weight, layer3.22.bn1.weight, layer3.22.bn1.bias, layer3.22.bn1.running_mean, layer3.22.bn1.running_var, layer3.22.conv2.weight, layer3.22.bn2.weight, layer3.22.bn2.bias, layer3.22.bn2.running_mean, layer3.22.bn2.running_var, layer3.22.conv3.weight, layer3.22.bn3.weight, layer3.22.bn3.bias, layer3.22.bn3.running_mean, layer3.22.bn3.running_var

missing keys in source state_dict: conv1.weight_gamma, conv1.weight_beta, layer1.0.conv1.weight_gamma, layer1.0.conv1.weight_beta, layer1.0.conv2.weight_gamma, layer1.0.conv2.weight_beta, layer1.0.conv3.weight_gamma, layer1.0.conv3.weight_beta, layer1.0.downsample.0.weight_gamma, layer1.0.downsample.0.weight_beta, layer1.1.conv1.weight_gamma, layer1.1.conv1.weight_beta, layer1.1.conv2.weight_gamma, layer1.1.conv2.weight_beta, layer1.1.conv3.weight_gamma, layer1.1.conv3.weight_beta, layer1.2.conv1.weight_gamma, layer1.2.conv1.weight_beta, layer1.2.conv2.weight_gamma, layer1.2.conv2.weight_beta, layer1.2.conv3.weight_gamma, layer1.2.conv3.weight_beta, layer2.0.conv1.weight_gamma, layer2.0.conv1.weight_beta, layer2.0.conv2.weight_diff, layer2.0.conv2.weight_gamma, layer2.0.conv2.weight_beta, layer2.0.conv2.switch.weight, layer2.0.conv2.switch.bias, layer2.0.conv2.pre_context.weight, layer2.0.conv2.pre_context.bias, layer2.0.conv2.post_context.weight, layer2.0.conv2.post_context.bias, layer2.0.conv2.offset_s.weight, layer2.0.conv2.offset_s.bias, layer2.0.conv2.offset_l.weight, layer2.0.conv2.offset_l.bias, layer2.0.conv3.weight_gamma, layer2.0.conv3.weight_beta, layer2.0.downsample.0.weight_gamma, layer2.0.downsample.0.weight_beta, layer2.1.conv1.weight_gamma, layer2.1.conv1.weight_beta, layer2.1.conv2.weight_diff, layer2.1.conv2.weight_gamma, layer2.1.conv2.weight_beta, layer2.1.conv2.switch.weight, layer2.1.conv2.switch.bias, layer2.1.conv2.pre_context.weight, layer2.1.conv2.pre_context.bias, layer2.1.conv2.post_context.weight, layer2.1.conv2.post_context.bias, layer2.1.conv2.offset_s.weight, layer2.1.conv2.offset_s.bias, layer2.1.conv2.offset_l.weight, layer2.1.conv2.offset_l.bias, layer2.1.conv3.weight_gamma, layer2.1.conv3.weight_beta, layer2.2.conv1.weight_gamma, layer2.2.conv1.weight_beta, layer2.2.conv2.weight_diff, layer2.2.conv2.weight_gamma, layer2.2.conv2.weight_beta, layer2.2.conv2.switch.weight, layer2.2.conv2.switch.bias, layer2.2.conv2.pre_context.weight, layer2.2.conv2.pre_context.bias, layer2.2.conv2.post_context.weight, layer2.2.conv2.post_context.bias, layer2.2.conv2.offset_s.weight, layer2.2.conv2.offset_s.bias, layer2.2.conv2.offset_l.weight, layer2.2.conv2.offset_l.bias, layer2.2.conv3.weight_gamma, layer2.2.conv3.weight_beta, layer2.3.conv1.weight_gamma, layer2.3.conv1.weight_beta, layer2.3.conv2.weight_diff, layer2.3.conv2.weight_gamma, layer2.3.conv2.weight_beta, layer2.3.conv2.switch.weight, layer2.3.conv2.switch.bias, layer2.3.conv2.pre_context.weight, layer2.3.conv2.pre_context.bias, layer2.3.conv2.post_context.weight, layer2.3.conv2.post_context.bias, layer2.3.conv2.offset_s.weight, layer2.3.conv2.offset_s.bias, layer2.3.conv2.offset_l.weight, layer2.3.conv2.offset_l.bias, layer2.3.conv3.weight_gamma, layer2.3.conv3.weight_beta, layer3.0.conv1.weight_gamma, layer3.0.conv1.weight_beta, layer3.0.conv2.weight_diff, layer3.0.conv2.weight_gamma, layer3.0.conv2.weight_beta, layer3.0.conv2.switch.weight, layer3.0.conv2.switch.bias, layer3.0.conv2.pre_context.weight, layer3.0.conv2.pre_context.bias, layer3.0.conv2.post_context.weight, layer3.0.conv2.post_context.bias, layer3.0.conv2.offset_s.weight, layer3.0.conv2.offset_s.bias, layer3.0.conv2.offset_l.weight, layer3.0.conv2.offset_l.bias, layer3.0.conv3.weight_gamma, layer3.0.conv3.weight_beta, layer3.0.downsample.0.weight_gamma, layer3.0.downsample.0.weight_beta, layer3.1.conv1.weight_gamma, layer3.1.conv1.weight_beta, layer3.1.conv2.weight_diff, layer3.1.conv2.weight_gamma, layer3.1.conv2.weight_beta, layer3.1.conv2.switch.weight, layer3.1.conv2.switch.bias, layer3.1.conv2.pre_context.weight, layer3.1.conv2.pre_context.bias, layer3.1.conv2.post_context.weight, layer3.1.conv2.post_context.bias, layer3.1.conv2.offset_s.weight, layer3.1.conv2.offset_s.bias, layer3.1.conv2.offset_l.weight, layer3.1.conv2.offset_l.bias, layer3.1.conv3.weight_gamma, layer3.1.conv3.weight_beta, layer3.2.conv1.weight_gamma, layer3.2.conv1.weight_beta, layer3.2.conv2.weight_diff, layer3.2.conv2.weight_gamma, layer3.2.conv2.weight_beta, layer3.2.conv2.switch.weight, layer3.2.conv2.switch.bias, layer3.2.conv2.pre_context.weight, layer3.2.conv2.pre_context.bias, layer3.2.conv2.post_context.weight, layer3.2.conv2.post_context.bias, layer3.2.conv2.offset_s.weight, layer3.2.conv2.offset_s.bias, layer3.2.conv2.offset_l.weight, layer3.2.conv2.offset_l.bias, layer3.2.conv3.weight_gamma, layer3.2.conv3.weight_beta, layer3.3.conv1.weight_gamma, layer3.3.conv1.weight_beta, layer3.3.conv2.weight_diff, layer3.3.conv2.weight_gamma, layer3.3.conv2.weight_beta, layer3.3.conv2.switch.weight, layer3.3.conv2.switch.bias, layer3.3.conv2.pre_context.weight, layer3.3.conv2.pre_context.bias, layer3.3.conv2.post_context.weight, layer3.3.conv2.post_context.bias, layer3.3.conv2.offset_s.weight, layer3.3.conv2.offset_s.bias, layer3.3.conv2.offset_l.weight, layer3.3.conv2.offset_l.bias, layer3.3.conv3.weight_gamma, layer3.3.conv3.weight_beta, layer3.4.conv1.weight_gamma, layer3.4.conv1.weight_beta, layer3.4.conv2.weight_diff, layer3.4.conv2.weight_gamma, layer3.4.conv2.weight_beta, layer3.4.conv2.switch.weight, layer3.4.conv2.switch.bias, layer3.4.conv2.pre_context.weight, layer3.4.conv2.pre_context.bias, layer3.4.conv2.post_context.weight, layer3.4.conv2.post_context.bias, layer3.4.conv2.offset_s.weight, layer3.4.conv2.offset_s.bias, layer3.4.conv2.offset_l.weight, layer3.4.conv2.offset_l.bias, layer3.4.conv3.weight_gamma, layer3.4.conv3.weight_beta, layer3.5.conv1.weight_gamma, layer3.5.conv1.weight_beta, layer3.5.conv2.weight_diff, layer3.5.conv2.weight_gamma, layer3.5.conv2.weight_beta, layer3.5.conv2.switch.weight, layer3.5.conv2.switch.bias, layer3.5.conv2.pre_context.weight, layer3.5.conv2.pre_context.bias, layer3.5.conv2.post_context.weight, layer3.5.conv2.post_context.bias, layer3.5.conv2.offset_s.weight, layer3.5.conv2.offset_s.bias, layer3.5.conv2.offset_l.weight, layer3.5.conv2.offset_l.bias, layer3.5.conv3.weight_gamma, layer3.5.conv3.weight_beta, layer4.0.conv1.weight_gamma, layer4.0.conv1.weight_beta, layer4.0.conv2.weight_diff, layer4.0.conv2.weight_gamma, layer4.0.conv2.weight_beta, layer4.0.conv2.switch.weight, layer4.0.conv2.switch.bias, layer4.0.conv2.pre_context.weight, layer4.0.conv2.pre_context.bias, layer4.0.conv2.post_context.weight, layer4.0.conv2.post_context.bias, layer4.0.conv2.offset_s.weight, layer4.0.conv2.offset_s.bias, layer4.0.conv2.offset_l.weight, layer4.0.conv2.offset_l.bias, layer4.0.conv3.weight_gamma, layer4.0.conv3.weight_beta, layer4.0.downsample.0.weight_gamma, layer4.0.downsample.0.weight_beta, layer4.1.conv1.weight_gamma, layer4.1.conv1.weight_beta, layer4.1.conv2.weight_diff, layer4.1.conv2.weight_gamma, layer4.1.conv2.weight_beta, layer4.1.conv2.switch.weight, layer4.1.conv2.switch.bias, layer4.1.conv2.pre_context.weight, layer4.1.conv2.pre_context.bias, layer4.1.conv2.post_context.weight, layer4.1.conv2.post_context.bias, layer4.1.conv2.offset_s.weight, layer4.1.conv2.offset_s.bias, layer4.1.conv2.offset_l.weight, layer4.1.conv2.offset_l.bias, layer4.1.conv3.weight_gamma, layer4.1.conv3.weight_beta, layer4.2.conv1.weight_gamma, layer4.2.conv1.weight_beta, layer4.2.conv2.weight_diff, layer4.2.conv2.weight_gamma, layer4.2.conv2.weight_beta, layer4.2.conv2.switch.weight, layer4.2.conv2.switch.bias, layer4.2.conv2.pre_context.weight, layer4.2.conv2.pre_context.bias, layer4.2.conv2.post_context.weight, layer4.2.conv2.post_context.bias, layer4.2.conv2.offset_s.weight, layer4.2.conv2.offset_s.bias, layer4.2.conv2.offset_l.weight, layer4.2.conv2.offset_l.bias, layer4.2.conv3.weight_gamma, layer4.2.conv3.weight_beta

Bug fix If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!

cch2016 commented 4 years ago

I replace backbone resnet50 with resnext101, I meet missing keys in source state_dict problem:

2020-08-11 10:25:03,000 - mmdet - INFO - load model from: open-mmlab://resnext101_32x4d
2020-08-11 10:25:27,770 - mmdet - WARNING - The model and loaded state dict do not match exactly

missing keys in source state_dict: layer2.0.conv2.weight_diff, layer2.0.conv2.switch.weight, layer2.0.conv2.switch.bias, layer2.0.conv2.pre_context.weight, layer2.0.conv2.pre_context.bias, layer2.0.conv2.post_context.weight, layer2.0.conv2.post_context.bias, layer2.0.conv2.offset_s.weight, layer2.0.conv2.offset_s.bias, layer2.0.conv2.offset_l.weight, layer2.0.conv2.offset_l.bias, layer2.1.conv2.weight_diff, layer2.1.conv2.switch.weight, layer2.1.conv2.switch.bias, layer2.1.conv2.pre_context.weight, layer2.1.conv2.pre_context.bias, layer2.1.conv2.post_context.weight, layer2.1.conv2.post_context.bias, layer2.1.conv2.offset_s.weight, layer2.1.conv2.offset_s.bias, layer2.1.conv2.offset_l.weight, layer2.1.conv2.offset_l.bias, layer2.2.conv2.weight_diff, layer2.2.conv2.switch.weight, layer2.2.conv2.switch.bias, layer2.2.conv2.pre_context.weight, layer2.2.conv2.pre_context.bias, layer2.2.conv2.post_context.weight, layer2.2.conv2.post_context.bias, layer2.2.conv2.offset_s.weight, layer2.2.conv2.offset_s.bias, layer2.2.conv2.offset_l.weight, layer2.2.conv2.offset_l.bias, layer2.3.conv2.weight_diff, layer2.3.conv2.switch.weight, layer2.3.conv2.switch.bias, layer2.3.conv2.pre_context.weight, layer2.3.conv2.pre_context.bias, layer2.3.conv2.post_context.weight, layer2.3.conv2.post_context.bias, layer2.3.conv2.offset_s.weight, layer2.3.conv2.offset_s.bias, layer2.3.conv2.offset_l.weight, layer2.3.conv2.offset_l.bias, layer3.0.conv2.weight_diff
dsnqr commented 4 years ago

I also encountered the same problem. How did you solve it later? I really want to know as soon as possible, looking forward to your reply! Thank you very much.