Open Wenting-Xu opened 4 years ago
I replace backbone resnet50 with resnext101, I meet missing keys in source state_dict
problem:
2020-08-11 10:25:03,000 - mmdet - INFO - load model from: open-mmlab://resnext101_32x4d
2020-08-11 10:25:27,770 - mmdet - WARNING - The model and loaded state dict do not match exactly
missing keys in source state_dict: layer2.0.conv2.weight_diff, layer2.0.conv2.switch.weight, layer2.0.conv2.switch.bias, layer2.0.conv2.pre_context.weight, layer2.0.conv2.pre_context.bias, layer2.0.conv2.post_context.weight, layer2.0.conv2.post_context.bias, layer2.0.conv2.offset_s.weight, layer2.0.conv2.offset_s.bias, layer2.0.conv2.offset_l.weight, layer2.0.conv2.offset_l.bias, layer2.1.conv2.weight_diff, layer2.1.conv2.switch.weight, layer2.1.conv2.switch.bias, layer2.1.conv2.pre_context.weight, layer2.1.conv2.pre_context.bias, layer2.1.conv2.post_context.weight, layer2.1.conv2.post_context.bias, layer2.1.conv2.offset_s.weight, layer2.1.conv2.offset_s.bias, layer2.1.conv2.offset_l.weight, layer2.1.conv2.offset_l.bias, layer2.2.conv2.weight_diff, layer2.2.conv2.switch.weight, layer2.2.conv2.switch.bias, layer2.2.conv2.pre_context.weight, layer2.2.conv2.pre_context.bias, layer2.2.conv2.post_context.weight, layer2.2.conv2.post_context.bias, layer2.2.conv2.offset_s.weight, layer2.2.conv2.offset_s.bias, layer2.2.conv2.offset_l.weight, layer2.2.conv2.offset_l.bias, layer2.3.conv2.weight_diff, layer2.3.conv2.switch.weight, layer2.3.conv2.switch.bias, layer2.3.conv2.pre_context.weight, layer2.3.conv2.pre_context.bias, layer2.3.conv2.post_context.weight, layer2.3.conv2.post_context.bias, layer2.3.conv2.offset_s.weight, layer2.3.conv2.offset_s.bias, layer2.3.conv2.offset_l.weight, layer2.3.conv2.offset_l.bias, layer3.0.conv2.weight_diff
I also encountered the same problem. How did you solve it later? I really want to know as soon as possible, looking forward to your reply! Thank you very much.
Thanks for your error report and we appreciate it a lot.
Checklist
Describe the bug I train my dataset as coco formI can properly train myself for data sets in coco format.bue i got an warming Reproduction
Did you make any modifications on the code or config? Did you understand what you have modified? i just change num_classes
What dataset did you use? my own dataset as coco format.it contain 21 classes Environment
Please run
python mmdet/utils/collect_env.py
to collect necessary environment infomation and paste it here. sys.platform: linux Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0] CUDA available: True CUDA_HOME: /usr/local/cuda-10.1 NVCC: Cuda compilation tools, release 10.1, V10.1.243 GPU 0,1,2,3: Tesla V100-DGXS-32GB GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0 PyTorch: 1.4.0 PyTorch compiling details: PyTorch built with:TorchVision: 0.5.0 OpenCV: 4.3.0 MMCV: 1.0.4 MMDetection: 1.1.0+unknown MMDetection Compiler: GCC 7.4 MMDetection CUDA Compiler: 10.1
Error traceback If applicable, paste the error trackback here.
Bug fix If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!