node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.
This logic was insufficient when extracting tar files that contained two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive could thus include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. It led to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.
The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. If this is not possible, a workaround is available below.
Patches
6.1.9 || 5.0.10 || 4.4.18
Workarounds
Users may work around this vulnerability without upgrading by creating a custom filter method which prevents the extraction of symbolic links.
Users are encouraged to upgrade to the latest patched versions, rather than attempt to sanitize tar input themselves.
Fix
The problem is addressed in the following ways, when comparing paths in the directory cache and path reservation systems:
The String.normalize('NFKD') method is used to first normalize all unicode to its maximally compatible and multi-code-point form.
All slashes are normalized to / on Windows systems (on posix systems, \ is a valid filename character, and thus left intact).
When a symbolic link is encountered on Windows systems, the entire directory cache is cleared. Collisions related to use of 8.3 short names to replace directories with other (non-symlink) types of entries may make archives fail to extract properly, but will not result in arbitrary file writes.
node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.
This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators, however \ is a valid filename character on posix systems.
By first creating a directory, and then replacing that directory with a symlink, it was thus possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.
Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.
These issues were addressed in releases 4.4.16, 5.0.8 and 6.1.7.
The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. If this is not possible, a workaround is available below.
Patches
4.4.16 || 5.0.8 || 6.1.7
Workarounds
Users may work around this vulnerability without upgrading by creating a custom filter method which prevents the extraction of symbolic links.
Users are encouraged to upgrade to the latest patched versions, rather than attempt to sanitize tar input themselves.
Fix
The problem is addressed in the following ways:
All paths are normalized to use / as a path separator, replacing \ with / on Windows systems, and leaving \ intact in the path on posix systems. This is performed in depth, at every level of the program where paths are consumed.
Directory cache pruning is performed case-insensitively. This may result in undue cache misses on case-sensitive file systems, but the performance impact is negligible.
Caveat
Note that this means that the entry objects exposed in various parts of tar's API will now always use / as a path separator, even on Windows systems. This is not expected to cause problems, as / is a valid path separator on Windows systems, but may result in issues if entry.path is compared against a path string coming from some other API such as fs.realpath() or path.resolve().
Users are encouraged to always normalize paths using a well-tested method such as path.resolve() before comparing paths to one another.
node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.
This logic was insufficient on Windows systems when extracting tar files that contained a path that was not an absolute path, but specified a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) would resolve against the current working directory on the C: drive, rather than the extraction target directory.
Additionally, a .. portion of the path could occur immediately after the drive letter, such as C:../foo, and was not properly sanitized by the logic that checked for .. within the normalized and split portions of the path.
This only affects users of node-tar on Windows systems.
Patches
4.4.18 || 5.0.10 || 6.1.9
Workarounds
There is no reasonable way to work around this issue without performing the same path normalization procedures that node-tar now does.
Users are encouraged to upgrade to the latest patched versions of node-tar, rather than attempt to sanitize paths themselves.
Fix
The fixed versions strip path roots from all paths prior to being resolved against the extraction target folder, even if such paths are not "absolute".
Additionally, a path starting with a drive letter and then two dots, like c:../, would bypass the check for .. path portions. This is checked properly in the patched versions.
Finally, a defense in depth check is added, such that if the entry.absolute is outside of the extraction taret, and we are not in preservePaths:true mode, a warning is raised on that entry, and it is skipped. Currently, it is believed that this check is redundant, but it did catch some oversights in development.
Configuration
đ Schedule: "" (UTC).
đŠ Automerge: Enabled.
â» Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.
đ Ignore: Close this PR and you won't be reminded about this update again.
[ ] If you want to rebase/retry this PR, check this box.
This PR contains the following updates:
6.1.2
->6.1.9
GitHub Vulnerability Alerts
CVE-2021-37712
Impact
Arbitrary File Creation, Arbitrary File Overwrite, Arbitrary Code Execution
node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.
This logic was insufficient when extracting tar files that contained two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive could thus include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. It led to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.
The v3 branch of
node-tar
has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version ofnode-tar
. If this is not possible, a workaround is available below.Patches
6.1.9 || 5.0.10 || 4.4.18
Workarounds
Users may work around this vulnerability without upgrading by creating a custom filter method which prevents the extraction of symbolic links.
Users are encouraged to upgrade to the latest patched versions, rather than attempt to sanitize tar input themselves.
Fix
The problem is addressed in the following ways, when comparing paths in the directory cache and path reservation systems:
String.normalize('NFKD')
method is used to first normalize all unicode to its maximally compatible and multi-code-point form./
on Windows systems (on posix systems,\
is a valid filename character, and thus left intact).CVE-2021-37701
Impact
Arbitrary File Creation, Arbitrary File Overwrite, Arbitrary Code Execution
node-tar
aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both
\
and/
characters as path separators, however\
is a valid filename character on posix systems.By first creating a directory, and then replacing that directory with a symlink, it was thus possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.
Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at
FOO
, followed by a symbolic link namedfoo
, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within theFOO
directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.These issues were addressed in releases 4.4.16, 5.0.8 and 6.1.7.
The v3 branch of
node-tar
has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version ofnode-tar
. If this is not possible, a workaround is available below.Patches
4.4.16 || 5.0.8 || 6.1.7
Workarounds
Users may work around this vulnerability without upgrading by creating a custom filter method which prevents the extraction of symbolic links.
Users are encouraged to upgrade to the latest patched versions, rather than attempt to sanitize tar input themselves.
Fix
The problem is addressed in the following ways:
/
as a path separator, replacing\
with/
on Windows systems, and leaving\
intact in the path on posix systems. This is performed in depth, at every level of the program where paths are consumed.Caveat
Note that this means that the
entry
objects exposed in various parts of tar's API will now always use/
as a path separator, even on Windows systems. This is not expected to cause problems, as/
is a valid path separator on Windows systems, but may result in issues ifentry.path
is compared against a path string coming from some other API such asfs.realpath()
orpath.resolve()
.Users are encouraged to always normalize paths using a well-tested method such as
path.resolve()
before comparing paths to one another.CVE-2021-37713
Impact
Arbitrary File Creation, Arbitrary File Overwrite, Arbitrary Code Execution
node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain
..
path portions, and resolving the sanitized paths against the extraction target directory.This logic was insufficient on Windows systems when extracting tar files that contained a path that was not an absolute path, but specified a drive letter different from the extraction target, such as
C:some\path
. If the drive letter does not match the extraction target, for exampleD:\extraction\dir
, then the result ofpath.resolve(extractionDirectory, entryPath)
would resolve against the current working directory on theC:
drive, rather than the extraction target directory.Additionally, a
..
portion of the path could occur immediately after the drive letter, such asC:../foo
, and was not properly sanitized by the logic that checked for..
within the normalized and split portions of the path.This only affects users of
node-tar
on Windows systems.Patches
4.4.18 || 5.0.10 || 6.1.9
Workarounds
There is no reasonable way to work around this issue without performing the same path normalization procedures that node-tar now does.
Users are encouraged to upgrade to the latest patched versions of node-tar, rather than attempt to sanitize paths themselves.
Fix
The fixed versions strip path roots from all paths prior to being resolved against the extraction target folder, even if such paths are not "absolute".
Additionally, a path starting with a drive letter and then two dots, like
c:../
, would bypass the check for..
path portions. This is checked properly in the patched versions.Finally, a defense in depth check is added, such that if the
entry.absolute
is outside of the extraction taret, and we are not in preservePaths:true mode, a warning is raised on that entry, and it is skipped. Currently, it is believed that this check is redundant, but it did catch some oversights in development.Configuration
đ Schedule: "" (UTC).
đŠ Automerge: Enabled.
â» Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.
đ Ignore: Close this PR and you won't be reminded about this update again.
This PR has been generated by WhiteSource Renovate. View repository job log here.