jphall663 / awesome-machine-learning-interpretability

A curated list of awesome responsible machine learning resources.
Creative Commons Zero v1.0 Universal
3.65k stars 586 forks source link

Add to reference library #68

Closed jphall663 closed 1 year ago

jphall663 commented 1 year ago

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf https://assets.iqt.org/pdfs/IQTLabs_RoBERTaAudit_Dec2022_final.pdf/web/viewer.html https://docs.google.com/presentation/d/1m0p1KcYw-HM6U0hr_8egH2-7v4SlQhJq/edit https://hackerone.com/twitter-algorithmic-bias?type=team https://incidentdatabase.ai/ https://avidml.org/ https://github.com/nyu-mll/bbq https://allenai.org/data/real-toxicity-prompts https://www.promptingguide.ai https://syntheticmedia.partnershiponai.org/ https://github.com/rudinger/winogender-schemas https://github.com/sylinrl/TruthfulQA https://arxiv.org/pdf/2005.00816.pdf https://blogs.gwu.edu/law-eti/ai-litigation-database/