Closed jpsember closed 7 years ago
If downloading the dataset, don't add it to the repo! I.e., make sure an appropriate .gitignore entry exists to skip it.
py> python cifar.py
dict size: {'data': array([[ 59, 43, 50, ..., 140, 84, 72],
[154, 126, 105, ..., 139, 142, 144],
[255, 253, 253, ..., 83, 83, 84],
...,
[ 71, 60, 74, ..., 68, 69, 68],
[250, 254, 211, ..., 215, 255, 254],
[ 62, 61, 60, ..., 130, 130, 131]], dtype=uint8), 'labels': [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6, 4, 3, 6, 6, 2, 6, 3, 5, 4, 0, 0, 9, 1, 3, 4, 0, 3, 7, 3, 3, 5, 2, 2, 7, 1, 1, 1, 2, 2, 0, 9, 5, 7, 9, 2, 2, 5, 2, 4, 3, 1, 1, 8, 2, 1, 1, 4, 9, 7, 8, 5, 9, 6, 7, 3, 1, 9, 0, 3, 1, 3, 5, 4, 5, 7, 7, 4, 7, 9, 4, 2, 3, 8, 0, 1, 6, 1, 1, 4, 1, 8, 3, 9, 6, 6, 1, 8, 5, 2, 9, 9, 8, 1, 7, 7, 0, 0, 6, 9, 1, 2, 2, 9, 2, 6, 6, 1, 9, 5, 0, 4, 7, 6, 7, 1, 8, 1, 1, 2, 8, 1, 3, 3, 6, 2, 4, 9, 9, 5, 4, 3, 6, 7, 4, 6, 8, 5, 5, 4, 3, 1, 8, 4, 7, 6, 0, 9, 5, 1, 3, 8, 2, 7, 5, 3, 4, 1, 5, 7, 0, 4,
:
:
0, 3, 0, 8, 0, 0, 6, 6, 1, 3, 3, 6, 6, 5, 7, 5, 3, 8, 2, 1, 9, 0, 4, 6, 9, 2, 3, 9, 4, 1, 4, 2, 2, 3, 4, 8, 4, 3, 0, 6, 8, 8, 6, 2, 3, 3, 7, 3, 5, 2, 9, 6, 0, 2, 3, 5, 2, 4, 9, 5, 1, 6, 0, 3, 3, 7, 3, 7, 9, 8, 1, 5, 2, 8, 0, 2, 9, 5, 6, 6, 2, 6, 7, 4, 2, 4, 5, 8, 7, 6, 1, 1, 9, 5, 9, 7, 2, 1, 2, 9, 6, 8, 0, 3, 7, 7, 7, 8, 2, 3, 9, 0, 4, 1, 6, 4, 5, 0, 6, 6, 7, 2, 6, 9, 7, 9, 6, 6, 1, 3, 2, 4, 1, 1, 0, 4, 2, 6, 0, 8, 4, 4, 9, 8, 1, 5, 8, 1, 1, 8, 8, 9, 7, 2, 4, 5, 6, 4, 9, 6, 7, 5, 0, 8, 3, 5, 4, 5, 0, 5, 0, 2, 3, 0, 3, 7, 5, 0, 2, 3, 2, 3, 5, 9, 6, 3, 3, 8, 3, 9, 1, 7, 3, 0, 2, 0, 7, 5, 1, 1, 2, 6, 6, 1, 6, 8, 0, 8, 1, 0, 7, 2, 7, 3, 2, 3, 1, 9, 5, 3, 6, 9, 2, 4, 3, 8, 3, 8, 7, 2, 4, 2, 8, 4, 4, 2, 5, 6, 3, 9, 4, 6, 7, 0, 4, 4, 1, 8, 6, 2, 7, 4, 3, 1, 0, 7, 0, 9, 5, 8, 0, 1, 6, 9, 5, 0, 0, 2, 8, 5, 4, 0, 5, 1, 3, 3, 4, 9, 5, 3, 3, 1, 0, 1, 2, 2, 3, 6, 1, 2, 7, 8, 1, 9, 0, 6, 8, 6, 0, 8, 9, 2, 3, 7, 6, 2, 9, 8, 8, 6, 3, 0, 6, 9, 5, 9, 0, 7, 2, 0, 1, 2, 4, 1, 7, 5, 5, 2, 9, 2, 0, 5, 7, 4, 7, 7, 2, 7, 6, 5, 1, 5, 9, 7, 2, 0, 8, 9, 8, 6, 8, 5, 0, 7, 7, 8, 2, 1, 6, 1, 3, 1, 6, 6, 8, 2, 3, 7, 9, 8, 3, 8, 5, 7, 0, 1, 0, 7, 4, 2, 0, 4, 9, 4, 2, 7, 7, 4, 4, 1, 1, 0, 9, 0, 9, 8, 6, 4, 7, 2, 2, 2, 6, 0, 2, 1, 0, 2, 8, 4, 4, 6, 5, 9, 0, 1, 1, 8, 5, 1, 1, 8, 9, 0, 6, 4, 8, 4, 5, 7, 1, 4, 6, 2, 2, 6, 8, 2, 9, 2, 2, 7, 1, 4, 5, 3, 1, 0, 8, 4, 4, 3, 7, 8, 9, 3, 6, 1, 2, 1, 2, 2, 7, 1, 1, 1, 2, 5, 7, 2, 2, 7, 3, 4, 4, 5, 1, 0, 2, 9, 8, 3, 9, 1, 2, 0, 5, 9, 5, 9, 3, 1, 0, 3, 3, 0, 4, 0, 8, 4, 0, 1, 7, 5, 8, 3, 6, 9, 8, 7, 2, 8, 2, 3, 4, 5, 2, 6, 7, 4, 2, 7, 5, 5, 4, 8, 8, 1, 3, 8, 5, 4, 8, 9, 6, 9, 4, 3, 0, 1, 2, 2, 4, 6, 8, 8, 5, 0, 3, 1, 8, 3, 0, 7, 9, 8, 8, 9, 5, 2, 6, 4, 6, 8, 9, 8, 4, 8, 0, 5, 7, 1, 4, 8, 8, 3, 4, 0, 0, 5, 8, 3, 9, 3, 5, 9, 9, 6, 5, 8, 6, 3, 7, 2, 4, 0, 9, 2, 1, 0, 7, 3, 9, 8, 8, 4, 7, 7, 6, 9, 5, 8, 4, 6, 2, 2, 7, 6, 3, 3, 9, 2, 7, 6, 8, 1, 1, 5, 8, 5, 4, 4, 0, 3, 6, 1, 0, 6, 2, 6, 0, 3, 4, 6, 2, 6, 1, 1, 0, 7, 6, 5, 4, 5, 7, 1, 4, 4, 4, 7, 4, 4, 1, 4, 3, 6, 6, 8, 9, 6, 7, 2, 4, 3, 5, 3, 7, 8, 6, 2, 0, 0, 0, 2, 2, 5, 7, 1, 9, 6, 1, 9, 5, 9, 0, 6, 5, 4, 3, 8, 0, 6, 7, 1, 7, 4, 9, 8, 2, 6, 7, 3, 0, 5, 6, 7, 5, 7, 1, 6, 6, 4, 3, 3, 9, 8, 4, 3, 6, 4, 1, 6, 7, 4, 0, 1, 6, 3, 1, 2, 0, 0, 8, 6, 1, 6, 3, 8, 5, 0, 9, 1, 5, 4, 4, 0, 5, 2, 6, 1, 5, 9, 0, 8, 8, 1, 4, 9, 4, 4, 1, 0, 7, 3, 9, 1, 0, 2, 3, 1, 5, 2, 6, 9, 2, 3, 0, 7, 4, 3, 3, 0, 9, 3, 8, 3, 4, 2, 2, 1, 9, 0, 2, 8, 6, 6, 0, 3, 3, 6, 5, 3, 4, 1, 2, 0, 8, 9, 4, 1, 7, 2, 6, 1, 3, 3, 0, 1, 9, 5, 4, 4, 8, 2, 6, 2, 9, 7, 7, 7, 9, 8, 9, 4, 4, 7, 1, 0, 4, 3, 6, 3, 9, 8, 3, 6, 8, 3, 6, 6, 2, 6, 7, 3, 0, 0, 0, 2, 5, 1, 2, 9, 2, 2, 1, 6, 3, 9, 1, 1, 5], 'batch_label': 'training batch 1 of 5', 'filenames': ['leptodactylus_pentadactylus_s_000004.png', 'camion_s_000148.png', 'tipper_truck_s_001250.png', 'american_elk_s_001521.png', 'station_wagon_s_000293.png', 'coupe_s_001735.png', 'cassowary_s_001300.png', 'cow_pony_s_001168.png', 'sea_boat_s_001584.png', 'tabby_s_001355.png', 'muntjac_s_001000.png', 'arabian_s_001354.png', 'quarter_horse_s_000672.png', 'passerine_s_000343.png', 'camion_s_001895.png', 'trailer_truck_s_000335.png', 'dumper_s_000821.png', 'alley_cat_s_000200.png', 'accentor_s_000677.png', 'frog_s_001671.png', 'capreolus_capreolus_s_000051.png', 'tomcat_s_000772.png', 'pickerel_frog_s_000446.png', 'bufo_s_001242.png', 'cassowary_s_001246.png', 'toad_s_001748.png', 'cat_s_000081.png', 'chihuahua_s_000825.png', 'alces_alces_s_000959.png', 'stealth_bomber_s_000554.png', 'twinjet_s_000663.png', 'trucking_rig_s_001402.png', 'auto_s_000609.png', 'tabby_cat_s_000983.png', 'wapiti_s_000416.png', 'monoplane_s_000895.png', 'true_cat_s_000247.png', 'tennessee_walker_s_000486.png', 'house_cat_s_000243.png', 'house_cat_s_001196.png', 'pekinese_s_001337.png', 'ostrich_s_001368.png', 'ostrich_s_001150.png', 'stallion_s_000046.png', 'station_waggon_s_000041.png', 'coupe_s_001944.png', 'estate_car_s_000580.png', 'accentor_s_000759.png', 'emu_novaehollandiae_s_000795.png', 'dive_bomber_s_001390.png', 'articulated_lorry_s_000131.png', 'pekinese_s_001093.png', 'broodmare_s_001463.png', 'delivery_truck_s_000834.png', 'songbird_s_001052.png', 'emu_s_000692.png', 'puppy_s_000115.png', 'wagtail_s_001821.png', 'dama_dama_s_000658.png', 'domestic_cat_s_001970.png', 'ambulance_s_003039.png', 'convertible_s_001763.png', 'tank_ship_s_001229.png', 'cassowary_s_001055.png', 'wagon_s_001142.png', 'police_cruiser_s_000620.png', 'moose_s_002308.png', 'aerial_ladder_truck_s_000584.png', 'saddle_horse_s_000717.png', 'tanker_s_001350.png', 'mongrel_s_001571.png', 'truck_s_000835.png', 'pickerel_frog_s_001195.png', 'lipizzan_s_000399.png', 'tabby_s_000074.png', 'automobile_s_001887.png', 'moving_van_s_001665.png', 'attack_aircraft_s_000153.png', 'domestic_cat_s_001596.png', 'compact_car_s_000048.png', 'domestic_cat_s_000009.png', 'pekingese_s_002089.png', 'capreolus_capreolus_s_001095.png', 'blenheim_spaniel_s_001103.png', 'stallion_s_000040.png', 'stud_mare_s_001672.png', 'elk_s_000920.png', 'lipizzan_s_001123.png', 'fire_truck_s_002721.png', 'elk_s_001888.png', 'finch_s_000750.png', 'tabby_s_000880.png', 'banana_boat_s_001324.png', 'twinjet_s_000591.png', 'shooting_brake_s_000029.png', 'rana_pipiens_s_000101.png', 'station_wagon_s_001387.png', 'station_wagon_s_002712.png', 'odocoileus_hemionus_s_000221.png', 'convertible_s_001715.png', 'abandoned_ship_s_000574.png', 'true_cat_s_000114.png', 'dustcart_s_000063.png', 'frog_s_000797.png', 'green_frog_s_001320.png', 'compact_car_s_001038.png', 'freighter_s_001351.png', 'mutt_s_000251.png', 'accentor_s_000303.png', 'lorry_s_001154.png', 'fire_truck_s_000894.png', 'cargo_vessel_s_000731.png', 'cruiser_s_000774.png', 'lippizan_s_000359.png', 'broodmare_s_001741.png', 'fighter_aircraft_s_000876.png', 'amphibious_aircraft_s_000216.png', 'leopard_frog_s_000339.png', 'trucking_rig_s_001315.png', 'shooting_brake_s_000886.png', 'pipit_s_000549.png', 'ostrich_s_002148.png', 'trucking_rig_s_001600.png', 'alauda_arvensis_s_000755.png', 'rana_temporaria_s_001087.png', 'bufo_s_000136.png', 'estate_car_s_000529.png', 'aerial_ladder_truck_s_000997.png', 'toy_spaniel_s_000384.png', 'amphibious_aircraft_s_001195.png', 'fallow_deer_s_001598.png', 'quarter_horse_s_000414.png', 'anuran_s_000712.png', 'arabian_s_001366.png', 'auto_s_000040.png', 'cargo_ship_s_001063.png', 'motorcar_s_000121.png', 'motorcar_s_000305.png', 'anthus_pratensis_s_001071.png', 'cruiser_s_000294.png', 'wagon_s_000763.png', 'alley_cat_s_002579.png', 'tabby_cat_s_000825.png', 'spadefoot_s_000051.png', 'wagtail_s_002075.png', 'fallow_deer_s_001697.png', 'garbage_truck_s_000777.png', 'moving_van_s_000067.png', 'mongrel_s_000696.png', 'red_deer_s_000741.png', 'true_cat_s_001768.png', 'spadefoot_s_000377.png', 'lipizzan_s_001233.png', 'japanese_deer_s_000163.png', 'toad_s_002436.png', 'police_boat_s_001421.png', 'puppy_s_002062.png', 'lapdog_s_001869.png', 'elk_s_001196.png', 'domestic_cat_s_001235.png', 'car_s_000057.png', 'lightship_s_000064.png', 'fallow_deer_s_001997.png', 'quarter_horse_s_000022.png', 'bufo_calamita_s_000566.png', 'biplane_s_000624.png', 'fire_truck_s_001616.png', 'japanese_spaniel_s_000037.png', 'ambulance_s_001394.png', 'domestic_cat_s_001056.png', 'tugboat_s_001384.png', 'emu_s_000072.png', 'gelding_s_000206.png', 'puppy_s_000637.png', 'tabby_cat_s_002607.png', 'elk_s_001198.png', 'estate_car_s_001496.png', 'peke_s_001338.png', 'arabian_s_001018.png', 'fighter_aircraft_s_000538.png', 'fallow_deer_s_001164.png', 'lippizan_s_000390.png', 'toy_dog_s_000932.png', 'maltese_s_002151.png', 'car_s_000002.png', 'jumbo_jet_s_000697.png', 'dump_truck_s_000008.png', 'spadefoot_s_000084.png', 'motortruck_s_000014.png', 'jetliner_s_001502.png', 'tanker_s_000157.png', 'riding_horse_s_001870.png', 'cabin_cruiser_s_000096.png', 'dredger_s_001623.png', 'pipit_s_001102.png', 'mongrel_s_002430.png', 'skylark_s_000150.png', 'cat_s_001604.png', 'puppy_s_000211.png', 'airbus_s_001124.png', 'leopard_frog_s_001021.png', 'wagon_s_001824.png',
'garbage_truck_s_000147.png', 'tabby_s_001354.png', 'rana_temporaria_s_000295.png', 'lorry_s_000364.png', 'estate_car_s_000075.png', 'tabby_s_000970.png', 'fire_engine_s_000985.png', 'toad_s_000022.png', 'texas_toad_s_000215.png', 'broodmare_s_000707.png', 'car_s_000286.png',
'twinjet_s_000565.png', 'truck_s_001385.png', 'toy_dog_s_000752.png', 'police_boat_s_000092.png', 'toy_dog_s_001197.png', 'cassowary_s_002446.png', 'articulated_lorry_s_000050.png',
'monoplane_s_000781.png', 'lightship_s_000343.png', 'powerboat_s_001486.png', 'jumbo_jet_s_000071.png', 'bufo_debilis_s_000024.png', 'transporter_s_000272.png', 'estate_car_s_000743.png', 'motorcar_s_000697.png', 'rana_catesbeiana_s_001655.png', 'tabby_s_000675.png', 'remount_s_000285.png', 'rana_catesbeiana_s_001521.png', 'true_frog_s_000223.png', 'airliner_s_002304.png', 'natterjack_s_000987.png', 'leptodactylid_s_000082.png', 'coupe_s_001892.png', 'quarter_horse_s_000419.png', 'car_s_001323.png', 'maltese_dog_s_001043.png', 'boat_s_000543.png', 'tabby_cat_s_001537.png', 'rana_catesbeiana_s_001096.png', 'bufo_bufo_s_000326.png', 'pilot_boat_s_000646.png', 'toad_frog_s_001672.png', 'boat_s_000988.png', 'deer_s_001383.png', 'bufo_bufo_s_000261.png', :
:
:
:
'ostrich_s_001827.png', 'auto_s_000911.png', 'rana_temporaria_s_000775.png', 'tabby_s_002228.png', 'truck_s_000036.png', 'car_s_002296.png', 'estate_car_s_001433.png', 'cur_s_000170.png']}
py> python cifar.py
image: [28 37 38 ..., 28 37 46] length: 3072
label: 4
http://www.cs.toronto.edu/~kriz/cifar.html