Open hangzeli08 opened 1 year ago
You should download the weights and merge them with llama. Then you can do this
mkdir -p exp_name/checkpoint-0
Then move the checkpoints to checkpoint-0
then
WORKDIR=exp_name
export PYTHONPATH=`pwd`:$PYTHONPATH
torchrun --nnodes=1 --nproc_per_node=8 --master_port=25001 \
gpt4roi/train/train_mem.py \
--model_name_or_path path_to_vicuna-7b \
--vision_tower openai/clip-vit-large-patch14 \
--pretrain_mm_mlp_adapter LLaVA-7b-pretrain-projector-v0-CC3M-595K-original_caption.bin \
--dataset_config ./gpt4roi/configs/stage2.py \
--mm_vision_select_layer -2 \
--mm_use_im_start_end True \
--bf16 True \
--output_dir $WORKDIR \
--num_train_epochs 2 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 3000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.003 \
--warmup_steps 3000 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--lazy_preprocess True \
--report_to "none" \
--seed 0 \
| tee $WORKDIR/train.log
You can find this logic at https://github.com/jshilong/GPT4RoI/blob/0827109da4716d01f168bf5fa682bd0e1a874d67/gpt4roi/train/train.py#L708
How can I design WORKDIR and STAGE1WORKDIR if I want to continue fine-tuning on your GPT4RoI weight node,