Describe the bugproblem_type="regression" needs to be defined in a pipeline and also in run_cross_validation, otherwise classification is inferred.
To Reproduce
creator = PipelineCreator()
creator.add('pca', apply_to='pca1', n_components=1)
creator.add('zscore', apply_to='pca2')
#creator.add('pca', apply_to='pca2', n_components=1)
creator.add('ridge', apply_to=['continuous', 'categorical'], problem_type='regression')
###############################################################################
# Split the dataset into train and test
train_diabetes, test_diabetes = train_test_split(data_diabetes, test_size=0.3)
###############################################################################
# Train a ridge regression model on train dataset and use mean absolute error
# for scoring
scores, model = run_cross_validation(
X=X,
y=y,
X_types=X_types,
data=train_diabetes,
model=creator,
problem_type="regression",
scoring="neg_mean_absolute_error",
return_estimator='final'
)
Expected behavior
The definitio n should be taken from the pipeline step and definining it again in run_cross_validation should raise an error.
System (please complete the following information):
OS: WSL Debian
Linux bnbnbkpatil 5.15.68.1-microsoft-standard-WSL2 #1 SMP Mon Sep 19 19:14:52 UTC 2022 x86_64 GNU/Linux
Describe the bug
problem_type="regression"
needs to be defined in a pipeline and also in run_cross_validation, otherwise classification is inferred.To Reproduce
Expected behavior The definitio n should be taken from the pipeline step and definining it again in
run_cross_validation
should raise an error.System (please complete the following information):