Closed ccoffrin closed 2 years ago
This has nothing to do with f2
. Your first example will not work because f(x...)
is not differentiable.
julia> ForwardDiff.gradient(f, [0.0, 0.0])
ERROR: Unexpected array ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}[Dual{ForwardDiff.Tag{typeof(f), Float64}}(0.0,1.0,0.0), Dual{ForwardDiff.Tag{typeof(f), Float64}}(0.0,0.0,1.0)] in nonlinear expression. Nonlinear expressions may contain only scalar expressions.
Stacktrace:
[1] error(s::String)
@ Base ./error.jl:33
[2] _parse_NL_expr_runtime(m::Model, x::Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}}, tape::Vector{JuMP._Derivatives.NodeData}, parent::Int64, values::Vector{Float64})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/parse_nlp.jl:457
[3] macro expansion
@ ~/.julia/packages/JuMP/Hc1qn/src/parse_nlp.jl:544 [inlined]
[4] macro expansion
@ ~/.julia/packages/JuMP/Hc1qn/src/macros.jl:2057 [inlined]
[5] f(x::Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}})
@ Main ./REPL[13]:4
[6] vector_mode_dual_eval!(f::typeof(f), cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}}}, x::Vector{Float64})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/apiutils.jl:37
[7] vector_mode_gradient(f::typeof(f), x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}}})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/gradient.jl:106
[8] gradient(f::Function, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}}}, ::Val{true})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/gradient.jl:19
[9] gradient(f::Function, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}}}) (repeats 2 times)
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/gradient.jl:17
[10] top-level scope
@ REPL[24]:1
julia> using JuMP
julia> using Ipopt
julia> function f(x...)
mf = Model(Ipopt.Optimizer)
@variable(mf, y[1:2])
@NLobjective(mf, Max, y[1]*x[1] + y[2]*x[2] - x[1]*y[1]^4 - 2*x[2]*y[2]^4)
@constraint(mf, (y[1]-10)^2 + (y[2]-10)^2 <= 25)
optimize!(mf)
return objective_value(mf)
end
f (generic function with 1 method)
julia> m = Model(Ipopt.Optimizer)
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: Ipopt
julia> @variable(m, x[1:2] >= 0)
2-element Vector{VariableRef}:
x[1]
x[2]
julia> JuMP.register(m, :f, 2, f, autodiff=true)
julia> @NLobjective(m, Min, f(x[1], x[2]))
julia> optimize!(m)
This is Ipopt version 3.14.4, running with linear solver MUMPS 5.4.1.
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 0
This is Ipopt version 3.14.4, running with linear solver MUMPS 5.4.1.
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 4
Number of nonzeros in Lagrangian Hessian.............: 4
Total number of variables............................: 2
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 1
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 0.0000000e+00 1.75e+02 9.99e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 0.0000000e+00 3.72e+01 9.45e-03 -1.0 4.42e+00 - 9.91e-01 1.00e+00h 1
2 0.0000000e+00 0.00e+00 1.47e-03 -1.0 9.96e+00 - 1.00e+00 1.00e+00h 1
3 0.0000000e+00 1.14e+03 8.53e-02 -1.0 3.62e+02 - 1.00e+00 1.00e+00f 1
4 0.0000000e+00 1.79e+02 2.08e-02 -1.0 1.61e+02 - 1.00e+00 1.00e+00h 1
5 0.0000000e+00 0.00e+00 3.47e-03 -1.0 7.06e+01 - 1.00e+00 1.00e+00h 1
6 0.0000000e+00 0.00e+00 3.00e-03 -1.0 9.80e+01 - 1.00e+00 1.00e+00h 1
7 0.0000000e+00 0.00e+00 6.27e-03 -1.0 1.07e+01 - 1.00e+00 1.00e+00h 1
8 0.0000000e+00 0.00e+00 2.25e-03 -1.0 3.99e+00 - 1.00e+00 1.00e+00h 1
9 0.0000000e+00 0.00e+00 4.68e-04 -1.0 4.38e+00 - 1.00e+00 1.00e+00h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 0.0000000e+00 0.00e+00 7.98e-05 -1.7 3.24e-01 - 1.00e+00 1.00e+00h 1
11 0.0000000e+00 0.00e+00 5.69e-07 -3.8 3.41e-04 - 1.00e+00 1.00e+00h 1
12 0.0000000e+00 0.00e+00 6.88e-09 -5.7 5.78e-04 - 1.00e+00 1.00e+00h 1
13 0.0000000e+00 0.00e+00 9.33e-12 -8.6 6.33e-05 - 1.00e+00 1.00e+00h 1
Number of Iterations....: 13
(scaled) (unscaled)
Objective...............: -0.0000000000000000e+00 0.0000000000000000e+00
Dual infeasibility......: 9.3292630065773811e-12 9.3292630065773811e-12
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 2.5050826949617035e-09 2.5050826949617035e-09
Overall NLP error.......: 2.5050826949617035e-09 2.5050826949617035e-09
Number of objective function evaluations = 14
Number of objective gradient evaluations = 14
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 14
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 14
Number of Lagrangian Hessian evaluations = 13
Total seconds in IPOPT = 0.007
EXIT: Optimal Solution Found.
ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2})
Closest candidates are:
(::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat at rounding.jl:200
(::Type{T})(::T) where T<:Number at boot.jl:760
(::Type{T})(::AbstractChar) where T<:Union{AbstractChar, Number} at char.jl:50
...
Stacktrace:
[1] convert(#unused#::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2})
@ Base ./number.jl:7
[2] push!(a::Vector{Float64}, item::ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2})
@ Base ./array.jl:928
[3] _parse_NL_expr_runtime(m::Model, x::ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}, tape::Vector{JuMP._Derivatives.NodeData}, parent::Int64, values::Vector{Float64})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/parse_nlp.jl:412
[4] macro expansion
@ ~/.julia/packages/JuMP/Hc1qn/src/parse_nlp.jl:544 [inlined]
[5] macro expansion
@ ~/.julia/packages/JuMP/Hc1qn/src/macros.jl:2057 [inlined]
[6] f(::ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}, ::Vararg{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}, N} where N)
@ Main ./REPL[13]:4
[7] (::JuMP.var"#132#134"{typeof(f)})(x::Vector{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/nlp.jl:1869
[8] vector_mode_dual_eval!(f::JuMP.var"#132#134"{typeof(f)}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}}}, x::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/apiutils.jl:37
[9] vector_mode_gradient!(result::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, f::JuMP.var"#132#134"{typeof(f)}, x::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}}})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/gradient.jl:113
[10] gradient!(result::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, f::JuMP.var"#132#134"{typeof(f)}, x::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}}}, ::Val{true})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/gradient.jl:37
[11] gradient!(result::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, f::JuMP.var"#132#134"{typeof(f)}, x::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}}})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PBzup/src/gradient.jl:35
[12] (::JuMP.var"#133#135"{ForwardDiff.GradientConfig{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#132#134"{typeof(f)}, Float64}, Float64, 2}}}, JuMP.var"#132#134"{typeof(f)}})(out::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, y::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/nlp.jl:1871
[13] eval_objective_gradient(d::JuMP._UserFunctionEvaluator, grad::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, x::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/nlp.jl:1860
[14] forward_eval(storage::Vector{Float64}, partials_storage::Vector{Float64}, nd::Vector{JuMP._Derivatives.NodeData}, adj::SparseArrays.SparseMatrixCSC{Bool, Int64}, const_values::Vector{Float64}, parameter_values::Vector{Float64}, x_values::Vector{Float64}, subexpression_values::Vector{Float64}, user_input_buffer::Vector{Float64}, user_output_buffer::Vector{Float64}, user_operators::JuMP._Derivatives.UserOperatorRegistry)
@ JuMP._Derivatives ~/.julia/packages/JuMP/Hc1qn/src/_Derivatives/forward.jl:181
[15] _forward_eval_all(d::NLPEvaluator, x::Vector{Float64})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/nlp.jl:773
[16] macro expansion
@ ~/.julia/packages/JuMP/Hc1qn/src/nlp.jl:842 [inlined]
[17] macro expansion
@ ./timing.jl:287 [inlined]
[18] eval_objective_gradient(d::NLPEvaluator, g::Vector{Float64}, x::Vector{Float64})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/nlp.jl:840
[19] _eval_objective_gradient(model::Ipopt.Optimizer, grad::Vector{Float64}, x::Vector{Float64})
@ Ipopt ~/.julia/packages/Ipopt/M2QE8/src/MOI_wrapper.jl:865
[20] (::Ipopt.var"#eval_grad_f_cb#4"{Ipopt.Optimizer})(x::Vector{Float64}, grad_f::Vector{Float64})
@ Ipopt ~/.julia/packages/Ipopt/M2QE8/src/MOI_wrapper.jl:1087
[21] _Eval_Grad_F_CB(n::Int32, x_ptr::Ptr{Float64}, #unused#::Int32, grad_f::Ptr{Float64}, user_data::Ptr{Nothing})
@ Ipopt ~/.julia/packages/Ipopt/M2QE8/src/C_wrapper.jl:49
[22] IpoptSolve(prob::IpoptProblem)
@ Ipopt ~/.julia/packages/Ipopt/M2QE8/src/C_wrapper.jl:433
[23] optimize!(model::Ipopt.Optimizer)
@ Ipopt ~/.julia/packages/Ipopt/M2QE8/src/MOI_wrapper.jl:1225
[24] optimize!
@ ~/.julia/packages/MathOptInterface/FHFUH/src/Bridges/bridge_optimizer.jl:348 [inlined]
[25] optimize!
@ ~/.julia/packages/MathOptInterface/FHFUH/src/MathOptInterface.jl:81 [inlined]
[26] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{Ipopt.Optimizer}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}})
@ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/FHFUH/src/Utilities/cachingoptimizer.jl:313
[27] optimize!(model::Model; ignore_optimize_hook::Bool, kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/optimizer_interface.jl:161
[28] optimize!(model::Model)
@ JuMP ~/.julia/packages/JuMP/Hc1qn/src/optimizer_interface.jl:143
[29] top-level scope
@ REPL[18]:1
You are right, below is a more compact example.
As I understand it, JuMP tries to auto register the function f
and uses autodiff
, but in this case this function requires an explicit gradient, so the autodiff breaks. What the user needs to do is explicitly call JuMP.register(m, :f, 2, f, f_grad)
.
I see now that on first invocation I am getting a warning,
┌ Warning: Function f automatically registered with 2 arguments.
...
In my previous workflow I missed this because I was developing the code interactively in the REPL and I must have missed the first invocation. This warning seems like an ok but not great feedback for the user. If feasible, I think the problem communication could be improved by
optimize!
generate a message like, "JuMP autodiff failed...using JuMP
using Ipopt
function f(x...)
mf = Model(Ipopt.Optimizer)
@variable(mf, y[1:2])
@NLobjective(mf, Max, y[1]*x[1] + y[2]*x[2] - x[1]*y[1]^4 - 2*x[2]*y[2]^4)
@constraint(mf, (y[1]-10)^2 + (y[2]-10)^2 <= 25)
optimize!(mf)
return objective_value(mf)
end
function f_grad(g, x...)
mf = Model(Ipopt.Optimizer)
@variable(mf, y[1:2] >= 0)
@NLobjective(mf, Max, y[1]*x[1] + y[2]*x[2] - x[1]*y[1]^4 - 2*x[2]*y[2]^4)
@constraint(mf, (y[1]-10)^2 + (y[2]-10)^2 <= 25)
optimize!(mf)
g[1] = value(y[1]) - value(y[1])^4
g[2] = value(y[2]) - 2*value(y[2])^4
end
m = Model(Ipopt.Optimizer)
@variable(m, x[1:2]>=0)
#JuMP.register(m, :f, 2, f, f_grad) # this works
@NLobjective(m, Min, f(x[1],x[2]))
optimize!(m)
If feasible, I think the problem communication could be improved by
- If it is possible to do some check at time of automatic registration to see if autodiff surely will not work on this function, and error if that is the case.
This is easy to do. It should catch most errors, but because we don't know the domain, there might be some false negatives: https://github.com/jump-dev/JuMP.jl/pull/2911
- When autodiff fails during optimize! generate a message like, "JuMP autodiff failed..."
This is a bit harder. Do we want to try-catch every invocation of ForwardDiff.derivative
? I guess we'd need to profile to see if it was expensive.
Looks great. Thanks!
This is a case where the user makes an implementation error and the message from JuMP could be improved.
In the following example the user means to put
@NLobjective(m, Min, f2(x[1],x[2]))
in the second model but uses@NLobjective(m, Min, f(x[1],x[2]))
instead. This results in a MethodError deep in JuMP's NLP implementation. Oddly, if the functionf
is sufficiently simple the issue does not occur.MWE
In Julia v1.7, JuMP v0.23.1 I get,