Open junxnone opened 5 years ago
bash init_venv.sh
Baidu Netdisk - mobilenet_sgd_68.848.pth.tar
python scripts/prepare_train_labels.py \ --labels mscoco2017/annotations/person_keypoints_train2017.json python scripts/make_val_subset.py \ --labels mscoco2017/annotations/person_keypoints_val2017.json
ulimit -n 65536 export CUDA_VISIBLE_DEVICES=1,2 python train.py --train-images-folder mscoco2017/train2017/ \ --prepared-train-labels prepared_train_annotation.pkl \ --val-labels val_subset.json --val-images-folder mscoco2017/val2017/ \ --checkpoint-path mobilenet_sgd_68.848.pth.tar --weights-only
太多GPU 会引发 ulimit issue
..... Iter: 45000 stage1_pafs_loss: 111.90049415588379 stage1_heatmaps_loss: 35.61218692779541 stage2_pafs_loss: 96.17975372314453 stage2_heatmaps_loss: 29.904519863128662 Validation... Running test for keypoints results. loading annotations into memory... Done (t=0.01s) creating index... index created! Loading and preparing results... DONE (t=0.02s) creating index... index created! Running per image evaluation... Evaluate annotation type *keypoints* DONE (t=0.22s). Accumulating evaluation results... DONE (t=0.00s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.322 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.554 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.323 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.291 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.382 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.368 Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.596 Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.374 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.301 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.456
python val.py \ --labels mscoco2017/annotations/person_keypoints_val2017.json \ --images-folder mscoco2017/val2017 \ --checkpoint-path default_checkpoints/checkpoint_iter_245000.pth.tar \ --multiscale
Reference
Setup Environment
Download pre-trained MobileNet v1 weights
Baidu Netdisk - mobilenet_sgd_68.848.pth.tar
Train
Validation