jwmcglynn / donner

Donner SVG, a modern C++20 SVG rendering library supporting the latest SVG2 and CSS3 standards
https://jwmcglynn.github.io/donner/
ISC License
13 stars 1 forks source link

Update dependency numpy to v2.1.0 #209

Closed renovate[bot] closed 2 months ago

renovate[bot] commented 2 months ago

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source, changelog) ==2.0.1 -> ==2.1.0 age adoption passing confidence

[!WARNING] Some dependencies could not be looked up. Check the Dependency Dashboard for more information.


Release Notes

numpy/numpy (numpy) ### [`v2.1.0`](https://togithub.com/numpy/numpy/compare/v2.0.1...v2.1.0) [Compare Source](https://togithub.com/numpy/numpy/compare/v2.0.2...v2.1.0) ### [`v2.0.2`](https://togithub.com/numpy/numpy/releases/tag/v2.0.2): NumPy 2.0.2 release (Aug 26, 2024) [Compare Source](https://togithub.com/numpy/numpy/compare/v2.0.1...v2.0.2) ##### NumPy 2.0.2 Release Notes NumPy 2.0.2 is a maintenance release that fixes bugs and regressions discovered after the 2.0.1 release. The Python versions supported by this release are 3.9-3.12. ##### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bruno Oliveira + - Charles Harris - Chris Sidebottom - Christian Heimes + - Christopher Sidebottom - Mateusz Sokół - Matti Picus - Nathan Goldbaum - Pieter Eendebak - Raghuveer Devulapalli - Ralf Gommers - Sebastian Berg - Yair Chuchem + ##### Pull requests merged A total of 19 pull requests were merged for this release. - [#​27000](https://togithub.com/numpy/numpy/pull/27000): REL: Prepare for the NumPy 2.0.1 release \[wheel build] - [#​27001](https://togithub.com/numpy/numpy/pull/27001): MAINT: prepare 2.0.x for further development - [#​27021](https://togithub.com/numpy/numpy/pull/27021): BUG: cfuncs.py: fix crash when sys.stderr is not available - [#​27022](https://togithub.com/numpy/numpy/pull/27022): DOC: Fix migration note for `alltrue` and `sometrue` - [#​27061](https://togithub.com/numpy/numpy/pull/27061): BUG: use proper input and output descriptor in array_assign_subscript... - [#​27073](https://togithub.com/numpy/numpy/pull/27073): BUG: Mirror VQSORT_ENABLED logic in Quicksort - [#​27074](https://togithub.com/numpy/numpy/pull/27074): BUG: Bump Highway to latest master - [#​27077](https://togithub.com/numpy/numpy/pull/27077): BUG: Off by one in memory overlap check - [#​27122](https://togithub.com/numpy/numpy/pull/27122): BUG: Use the new `npyv_loadable_stride_` functions for ldexp and... - [#​27126](https://togithub.com/numpy/numpy/pull/27126): BUG: Bump Highway to latest - [#​27128](https://togithub.com/numpy/numpy/pull/27128): BUG: add missing error handling in public_dtype_api.c - [#​27129](https://togithub.com/numpy/numpy/pull/27129): BUG: fix another cast setup in array_assign_subscript - [#​27130](https://togithub.com/numpy/numpy/pull/27130): BUG: Fix building NumPy in FIPS mode - [#​27131](https://togithub.com/numpy/numpy/pull/27131): BLD: update vendored Meson for cross-compilation patches - [#​27146](https://togithub.com/numpy/numpy/pull/27146): MAINT: Scipy openblas 0.3.27.44.4 - [#​27151](https://togithub.com/numpy/numpy/pull/27151): BUG: Do not accidentally store dtype metadata in `np.save` - [#​27195](https://togithub.com/numpy/numpy/pull/27195): REV: Revert undef I and document it - [#​27213](https://togithub.com/numpy/numpy/pull/27213): BUG: Fix NPY_RAVEL_AXIS on backwards compatible NumPy 2 builds - [#​27279](https://togithub.com/numpy/numpy/pull/27279): BUG: Fix array_equal for numeric and non-numeric scalar types ##### Checksums ##### MD5 ae4bc199b56d20305984b7465d6fbdf1 numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl ecce0a682c2ccaaa14500b87ffb69f63 numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl a94f34bec8a62dab95ce9883a87a82a6 numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl a0a26dadf73264d31b7a6952b816d7c8 numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl 972f4366651a1a2ef00f630595104d15 numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6cffef937fe67a3879abefd3d2c40fb8 numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3717a5deda20f465720717a1a7a293a6 numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl e31136ecc97bb76b3cb7e86bfc9471ac numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl 9703a02ca6b63ca53f83660d089f4294 numpy-2.0.2-cp310-cp310-win32.whl 12c097ef2c7492282a5514b5c4b68784 numpy-2.0.2-cp310-cp310-win_amd64.whl f11d11bfa3aaf371d2e7fa0160e3208b numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl 86fc67666fc6e27740fde7dacb19c484 numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl 5fd12e0dd7162ea9599c49bbb6e6730e numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl a40f473db729ea10ae401ce71899120a numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl 36ea96e0be954896597543d726157eda numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cfa726b6d5445687020fc4d4f7191e42 numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dfb9a7b7fe218e931b0dfb885a8250d6 numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl d8bf100186e6cd1b2f27eb617ba9e581 numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl 4fe937eba0fc4d28a65c0ba571c809fc numpy-2.0.2-cp311-cp311-win32.whl a9a0f8e1bc4d825272514896e3b17f15 numpy-2.0.2-cp311-cp311-win_amd64.whl 5ef80ec3b2db487d89c590eb301a7aa4 numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl 1bb398d93422bb9baf63c958ed1aa492 numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl cc8d990a1ad3f4d66d0143ea709ccc99 numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl 4fee57e854bc3e9a267e865740438d53 numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl c2c18eef5118607c0b023f6267ee9774 numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2928ed26d7153a488bfb126424d86c8f numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e32167073981b0a1a419aaaec741773e numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl 80a10803a3122472c1bf6c4617d0d1c5 numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl 39724e27a003b6ce9b1bcbf251e50b4b numpy-2.0.2-cp312-cp312-win32.whl 8319d0b3d23285d4698cbece73b23fde numpy-2.0.2-cp312-cp312-win_amd64.whl da0f655880bbcb53094816b77cd493d1 numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl 47347c028f6ccf47d6a22724111fc96f numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl 26a5c8dec993258522fcef84ef0c040e numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl fe447af86983ef2262e605a941bd46af numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl 96477b8563e6d4e2db710f4915a4c5e0 numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4e8255cdff60de62944aed1f4235ff68 numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 05d8465b87ca983eee044b66bc725391 numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl dcf448ef80720bae7de6724f92499754 numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl 71557f67f24d39db709cc4ccb85ae5b5 numpy-2.0.2-cp39-cp39-win32.whl f5dc31c5530037c4d1d990696b1d041c numpy-2.0.2-cp39-cp39-win_amd64.whl a8f814da1a4509724346c14cd838b5dc numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 918f072481d014229dd5f0f5ba75306f numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl fcbe2e38506fbbbeda509a89063563d3 numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b99eff795ca26f8a513aace76a45a356 numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl d517a3be706295c4a4c8f75f5ee7b261 numpy-2.0.2.tar.gz ##### SHA256 51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04 numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl 8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66 numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl 2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318 numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8 numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326 numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl 984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97 numpy-2.0.2-cp310-cp310-win32.whl c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131 numpy-2.0.2-cp310-cp310-win_amd64.whl 49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448 numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl 11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195 numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl 807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57 numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl 8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669 numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951 numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9 numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15 numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4 numpy-2.0.2-cp311-cp311-win32.whl 286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc numpy-2.0.2-cp311-cp311-win_amd64.whl df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl 8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl 9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692 numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl 671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5 numpy-2.0.2-cp312-cp312-win32.whl cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a numpy-2.0.2-cp312-cp312-win_amd64.whl 9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl 423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl 2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl 97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729 numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl 1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1 numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl 9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl 905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa numpy-2.0.2-cp39-cp39-win32.whl a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73 numpy-2.0.2-cp39-cp39-win_amd64.whl 7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8 numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4 numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl 26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385 numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl 883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78 numpy-2.0.2.tar.gz

Configuration

📅 Schedule: Branch creation - "on the 1st through 7th day of the month" (UTC), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.



This PR was generated by Mend Renovate. View the repository job log.

codecov[bot] commented 2 months ago

Codecov Report

All modified and coverable lines are covered by tests :white_check_mark:

Project coverage is 88.99%. Comparing base (9b97e92) to head (74d4f78). Report is 4 commits behind head on main.

Additional details and impacted files ```diff @@ Coverage Diff @@ ## main #209 +/- ## ========================================== - Coverage 89.00% 88.99% -0.02% ========================================== Files 279 279 Lines 22047 22047 Branches 2311 2311 ========================================== - Hits 19624 19621 -3 - Misses 1799 1800 +1 - Partials 624 626 +2 ``` | [Flag](https://app.codecov.io/gh/jwmcglynn/donner/pull/209/flags?src=pr&el=flags&utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Jeff+McGlynn) | Coverage Δ | | |---|---|---| | [unittests](https://app.codecov.io/gh/jwmcglynn/donner/pull/209/flags?src=pr&el=flag&utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Jeff+McGlynn) | `88.99% <ø> (-0.02%)` | :arrow_down: | Flags with carried forward coverage won't be shown. [Click here](https://docs.codecov.io/docs/carryforward-flags?utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Jeff+McGlynn#carryforward-flags-in-the-pull-request-comment) to find out more.

:umbrella: View full report in Codecov by Sentry.
:loudspeaker: Have feedback on the report? Share it here.