jwyang / fpn.pytorch

Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection
MIT License
955 stars 224 forks source link

Training suddenly terminate after first epoch. Looking for help, plz #25

Open KevinQian97 opened 6 years ago

KevinQian97 commented 6 years ago

Here are my Trace backs: [session 1][epoch 1][iter 0] loss: 4.0006, lr: 1.00e-02 fg/bg=(128/384), time cost: 7.218862 rpn_cls: 0.6919, rpn_box: 0.1386, rcnn_cls: 2.8319, rcnn_box 0.3382 Traceback (most recent call last): File "trainval_net.py", line 330, in roi_labels = FPN(im_data, im_info, gt_boxes, num_boxes) File "/home/zhiqi.cheng/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 357, in call result = self.forward(*input, **kwargs) File "/home/zhiqi.cheng/anaconda2/lib/python2.7/site-packages/torch/nn/parallel/data_parallel.py", line 73, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/zhiqi.cheng/anaconda2/lib/python2.7/site-packages/torch/nn/parallel/data_parallel.py", line 83, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/zhiqi.cheng/anaconda2/lib/python2.7/site-packages/torch/nn/parallel/parallel_apply.py", line 67, in parallel_apply raise output RuntimeError: invalid argument 2: Input tensor must have same size as output tensor apart from the specified dimension at /opt/conda/conda-bld/pytorch_1518238409320/work/torch/lib/THC/generic/THCTensorScatterGather.cu:29

KevinQian97 commented 6 years ago

I found that the code runs normally on faster-rcnn. But if I use the code of fpn, it failed. So I guess the problem happens in fpn.py, but I still can't find out why. What's more, I used this model to train my personal data, if I changed the data back to origin Voc2007, it works. That's strange. I just changed my personal data into the form of Voc2007. Here is one of my annotation file:

train VIRAT_S_000000.mp4_0 C:/Users/Kevin Qian/Downloads/images/train/VIRAT_S_000000.mp4_0.jpg Unknown 1920 1080 3 0 Other 0 636 723 655 787 Other 0 411 618 438 703 Person 0 349 709 410 850 Other 0 760 758 778 831 Person 0 1386 245 1432 354 Person 0 276 688 345 845 Other 0 512 687 541 747

and here is the annotation file in original voc2007

VOC2007 009962.jpg The VOC2007 Database PASCAL VOC2007 flickr 246788553 Tool - Wroclaw Milosz J. 500 375 3 0 chair Right 1 0 211 192 324 326 person Unspecified 1 0 162 72 273 248 person Right 1 0 250 68 473 312 person Right 1 0 4 2 253 374 diningtable Unspecified 1 1 358 216 500 375
WangTianYuan commented 6 years ago

@KevinQian97 I have encountered with the same problem. Have you found out how to solve it?

Karthik-Suresh93 commented 6 years ago

@KevinQian97 @WangTianYuan did you solve this issue?

krushi1992 commented 5 years ago

Have you solved the problem? I got the same error.@KevinQian97 @WangTianYuan

Complicateddd commented 4 years ago

Have you solved the problem? I got the same error.@KevinQian97 @WangTianYuan

I found that if you use your own dataset to train the model, if it has dirty data, it will cause Nan values in roi level in FPN.py. You can try the following modification methods: roi level[roi level < 2] = 2 roi level[roi level > 5] = 5 To roi level[roi level < 2] = 2 roi level[roi level > 5] = 5 roi level[roi level!=roi level]=5