jwzhanggy / Graph_Toolformer

MIT License
241 stars 26 forks source link

LLM_tuning demo GPU requirement : batch_size =2 #5

Closed YerongLi closed 1 year ago

YerongLi commented 1 year ago

I am getting OOM with V100 (32GB), when I set batch_size in gtoolformer_gptj_script.py to 2

    self.train_model(train_dataloader=self.data['train'])
  File "/scratch/yerong/Graph_Toolformer/LLM_Tuning/code/Method_Graph_Toolformer_GPTJ.py", line 82, in train_model
    self.optimizer.step()
  File "/scratch/yerong/.conda/envs/gtool/lib/python3.9/site-packages/torch/optim/optimizer.py", line 140, in wrapper
    out = func(*args, **kwargs)
  File "/scratch/yerong/.conda/envs/gtool/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
  File "/scratch/yerong/.conda/envs/gtool/lib/python3.9/site-packages/bitsandbytes/optim/optimizer.py", line 261, in step
    self.init_state(group, p, gindex, pindex)
  File "/scratch/yerong/.conda/envs/gtool/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
  File "/scratch/yerong/.conda/envs/gtool/lib/python3.9/site-packages/bitsandbytes/optim/optimizer.py", line 391, in init_state
    state["state1"] = torch.zeros_like(
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB (GPU 1; 31.75 GiB total capacity; 30.28 GiB already allocated;

Also I've got warnings on compute capability:

/scratch/yerong/.conda/envs/gtool/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!
jwzhanggy commented 1 year ago

you find the solution already, why you still ask this question?