Closed ponomarevsy closed 1 year ago
Hi,
as you noticed this could be due to jax incompatibility, The right versions to run alphafold v2.3.1 should be jax==0.3.25
and jaxlib==0.3.25+cuda11.cudnn805
.
Thank you, @PasqM! I am getting this error:
» pip install --upgrade jax==0.3.25 jaxlib==0.3.25+cuda11.cudnn805 -f https://sto
rage.googleapis.com/jax-releases/jax_releases.html
Looking in links: https://storage.googleapis.com/jax-releases/jax_releases.html
Collecting jax==0.3.25
Downloading jax-0.3.25.tar.gz (1.1 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 16.5 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
ERROR: Could not find a version that satisfies the requirement jaxlib==0.3.25+cuda11.cudnn805 (from versions: 0.1.32, 0.1.40, 0.1.41, 0.1.42, 0.1.43, 0.1.44, 0.1.46, 0.1.50, 0.1.51, 0.1.52, 0.1.55, 0.1.56, 0.1.57, 0.1.58, 0.1.59, 0.1.60, 0.1.61, 0.1.62, 0.1.63, 0.1.64, 0.1.65, 0.1.66, 0.1.67, 0.1.68, 0.1.69, 0.1.70, 0.1.71, 0.1.72, 0.1.73, 0.1.74, 0.1.75, 0.1.76, 0.3.0, 0.3.2, 0.3.5, 0.3.7, 0.3.8, 0.3.10, 0.3.14, 0.3.15, 0.3.18, 0.3.20, 0.3.22, 0.3.24, 0.3.25, 0.4.0, 0.4.1)
ERROR: No matching distribution found for jaxlib==0.3.25+cuda11.cudnn805
If I remove the "+cuda" part it installs, but the pipeline won't see GPUs (I am running on a 8 x V100 GPU node):
...
I0123 10:14:56.065946 47820129538944 xla_bridge.py:353] Unable to initialize backend 'tpu_driver': NOT_FOUND: Unable to find driver in registry given worker:
I0123 10:14:56.066154 47820129538944 xla_bridge.py:353] Unable to initialize backend 'cuda': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig'
I0123 10:14:56.066246 47820129538944 xla_bridge.py:353] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig'
I0123 10:14:56.068324 47820129538944 xla_bridge.py:353] Unable to initialize backend 'tpu': INVALID_ARGUMENT: TpuPlatform is not available.
...
W0123 10:14:56.068625 47820129538944 xla_bridge.py:360] No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
...
Also, is there a newer version of 'run_alphafold.sh' by Sanjay Kumar Srikakulam I can download?
Try pip install --upgrade --no-cache-dir jax==0.3.25 jaxlib==0.3.25+cuda11.cudnn805 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
, it should find the cuda version.
By the way, in the fork https://github.com/PasqM/alphafold_non_docker everything is updated to v2.3.1. It works in my set up and I submitted a pull request to this repo, try it if you like (and please report any issue).
And that 'pip' command worked indeed! Thank you. The "Unable to initialize backend 'cuda'" error is gone:
I0123 10:35:50.465131 47549919085440 xla_bridge.py:353] Unable to initialize backend 'tpu_driver': NOT_FOUND: Unable to find driver in registry given worker:
I0123 10:35:50.901049 47549919085440 xla_bridge.py:353] Unable to initialize backend 'rocm': NOT_FOUND: Could not find registered platform with name: "rocm". Available platform names are: Host Interpreter CUDA
I0123 10:35:50.901945 47549919085440 xla_bridge.py:353] Unable to initialize backend 'tpu': module 'jaxlib.xla_extension' has no attribute 'get_tpu_client'
I0123 10:35:50.902230 47549919085440 xla_bridge.py:353] Unable to initialize backend 'plugin': xla_extension has no attributes named get_plugin_device_client. Compile TensorFlow with //tensorflow/compiler/xla/python:enable_plugin_device set to true (defaults to false) to enable this.
But now I see a different error with a crash:
jax._src.traceback_util.UnfilteredStackTrace: TypeError: __init__() got an unexpected keyword argument 'param_axis'
Does it have to do with the input file? Here is what I have now for jax:
» conda list jax
# packages in environment at /path/to/Anaconda3/2020.07/envs/alphafold-2.3.1:
#
# Name Version Build Channel
jax 0.3.25 pypi_0 pypi
jaxlib 0.3.25+cuda11.cudnn805 pypi_0 pypi
» conda list cuda
# packages in environment at /path/to/Anaconda3/2020.07/envs/alphafold-2.3.1:
#
# Name Version Build Channel
cudatoolkit 11.2.2 hbe64b41_10 conda-forge
Please let me know if've seen this before...
I've never seen this, but I suggest verifying that every package is in the version stated in the README of https://github.com/PasqM/alphafold_non_docker (should be the one needed by the latest version of AF).
Yes, thank you. Used the latest 'run_alphafold.sh' and still getting the same error:
File "/path/to/alphafold/2.3.1-Python-3.8.0/alphafold/model/common_modules.py", line 150, in __init__
super().__init__(
TypeError: __init__() got an unexpected keyword argument 'param_axis'
...
» grep -i -r param_axis .
./alphafold/model/common_modules.py: param_axis=None):
./alphafold/model/common_modules.py: param_axis=param_axis)
./alphafold/model/common_modules.py: param_axis = self.param_axis[0] if self.param_axis else -1
./alphafold/model/common_modules.py: param_shape = (x.shape[param_axis],)
./alphafold/model/common_modules.py: param_broadcast_shape[param_axis] = x.shape[param_axis]
./alphafold/model/modules.py: param_axis=axis,
Hi @PasqM,
Would you kindly tell me where to download multimer_query.fasta, monomer.fasta and homomer.fasta files that are used in the examples here: https://github.com/PasqM/alphafold_non_docker? I think I am getting closer to solving this mystery after starting from scratch. Thank you for your help, as always.
Hi @ponomarevsy, these files are examples, you should replace them with the fasta file of your query sequence. Regarding your errors, I don't know what's the reason, I would try first of all to redownload alphafold 2.3.1 from https://github.com/deepmind/alphafold/archive/refs/tags/v2.3.1.tar.gz and then if it doesn't work to recreate the entire conda environment.
Started from scratch and I think it works now (some databases were missing in the previous step).
$ ./run_locally.bash
I0127 11:39:07.214764 47607713561088 templates.py:857] Using precomputed obsolete pdbs /path/to/alphafold database/pdb_mmcif/obsolete.dat.
I0127 11:39:07.451822 47607713561088 xla_bridge.py:353] Unable to initialize backend 'tpu_driver': NOT_FOUND: Unable to find driver in registry given worker:
I0127 11:39:07.714668 47607713561088 xla_bridge.py:353] Unable to initialize backend 'rocm': NOT_FOUND: Could not find registered platform with name: "rocm". Available platform names are: Interpreter CUDA Host
I0127 11:39:07.715586 47607713561088 xla_bridge.py:353] Unable to initialize backend 'tpu': module 'jaxlib.xla_extension' has no attribute 'get_tpu_client'
I0127 11:39:07.715865 47607713561088 xla_bridge.py:353] Unable to initialize backend 'plugin': xla_extension has no attributes named get_plugin_device_client. Compile TensorFlow with //tensorflow/compiler/xla/python:enable_plugin_device set to true (defaults to false) to enable this.
I0127 11:39:11.530140 47607713561088 run_alphafold.py:386] Have 5 models: ['model_1_pred_0', 'model_2_pred_0', 'model_3_pred_0', 'model_4_pred_0', 'model_5_pred_0']
I0127 11:39:11.530411 47607713561088 run_alphafold.py:403] Using random seed 1698875176206529255 for the data pipeline
I0127 11:39:11.530826 47607713561088 run_alphafold.py:161] Predicting query
I0127 11:39:11.533574 47607713561088 jackhmmer.py:133] Launching subprocess "path/to/Anaconda3/2022.05/envs/alphafold-2.3.1/bin/jackhmmer -o /dev/null -A /tmp/tmptuqx76m5/output.sto --noali --F1 0.0005 --F2 5e-05 --F3 5e-07 --incE 0.0001 -E 0.0001 --cpu 8 -N 1 /path/to/alphafold/2.3.1-Python-3.8.0/example/query.fasta /path/to/alphafold database/uniref90/uniref90.fasta"
I0127 11:39:11.588075 47607713561088 utils.py:36] Started Jackhmmer (uniref90.fasta) query
I0127 11:42:57.156229 47607713561088 utils.py:40] Finished Jackhmmer (uniref90.fasta) query in 225.568 seconds
I0127 11:42:57.160816 47607713561088 jackhmmer.py:133] Launching subprocess "/path/to/Anaconda3/2022.05/envs/alphafold-2.3.1/bin/jackhmmer -o /dev/null -A /tmp/tmphjfp3q0t/output.sto --noali --F1 0.0005 --F2 5e-05 --F3 5e-07 --incE 0.0001 -E 0.0001 --cpu 8 -N 1 /sysapps/cluster/software/alphafold/2.3.1-Python-3.8.0/example/query.fasta /path.to/alphafold database/mgnify/mgy_clusters_2022_05.fa"
I0127 11:42:57.222830 47607713561088 utils.py:36] Started Jackhmmer (mgy_clusters_2022_05.fa) query
I0127 11:51:12.557061 47607713561088 utils.py:40] Finished Jackhmmer (mgy_clusters_2022_05.fa) query in 495.334 seconds
I0127 11:51:12.562014 47607713561088 hhsearch.py:85] Launching subprocess "path/to/Anaconda3/2022.05/envs/alphafold-2.3.1/bin/hhsearch -i /tmp/tmpbjutb7tr/query.a3m -o /tmp/tmpbjutb7tr/output.hhr -maxseq 1000000 -d /path/to/alphafold database/pdb70/pdb70"
I0127 11:51:12.627545 47607713561088 utils.py:36] Started HHsearch query
I0127 11:51:35.905422 47607713561088 utils.py:40] Finished HHsearch query in 23.277 seconds
I0127 11:51:35.963973 47607713561088 hhblits.py:128] Launching subprocess "/path/to/Anaconda3/2022.05/envs/alphafold-2.3.1/bin/hhblits -i /sysapps/cluster/software/alphafold/2.3.1-Python-3.8.0/example/query.fasta -cpu 4 -oa3m /tmp/tmp47twq9d2/output.a3m -o /dev/null -n 3 -e 0.001 -maxseq 1000000 -realign_max 100000 -maxfilt 100000 -min_prefilter_hits 1000 -d /path/to/alphafold database/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt -d /path/to/alphafold database/uniref30/UniRef30_2021_03"
I0127 11:51:36.025832 47607713561088 utils.py:36] Started HHblits query
I0127 11:55:36.883327 47607713561088 utils.py:40] Finished HHblits query in 240.857 seconds
I0127 11:55:36.885067 47607713561088 templates.py:878] Searching for template for: GWSTELEKHREELKEFLKKEGITNVEIRIDNGRLEVRVEGGTERLKRFLEELRQKLEKKGYTVDIKIE
I0127 11:55:36.886693 47607713561088 templates.py:718] hit 6mrr_A did not pass prefilter: Template is an exact subsequence of query with large coverage. Length ratio: 1.0.
I0127 11:55:36.886936 47607713561088 templates.py:912] Skipped invalid hit 6MRR_A foldit1; De novo protein, Foldit; 1.18A {synthetic construct}, error: None, warning: None
I0127 11:55:37.177063 47607713561088 templates.py:267] Found an exact template match 6q64_A.
I0127 11:55:37.820456 47607713561088 templates.py:267] Found an exact template match 4s3k_A.
I0127 11:55:38.102424 47607713561088 templates.py:267] Found an exact template match 5jh8_A.
I0127 11:55:38.260325 47607713561088 templates.py:267] Found an exact template match 1jnd_A.
I0127 11:55:38.673694 47607713561088 templates.py:267] Found an exact template match 5y2a_B.
I0127 11:55:39.703439 47607713561088 templates.py:267] Found an exact template match 4wiw_B.
I0127 11:55:39.712453 47607713561088 templates.py:267] Found an exact template match 4wiw_D.
I0127 11:55:39.841529 47607713561088 templates.py:267] Found an exact template match 6jm7_A.
I0127 11:55:40.176994 47607713561088 templates.py:267] Found an exact template match 6jmb_A.
I0127 11:55:40.367680 47607713561088 templates.py:267] Found an exact template match 4q6t_A.
I0127 11:55:40.699988 47607713561088 templates.py:267] Found an exact template match 3oa5_B.
I0127 11:55:40.950988 47607713561088 templates.py:267] Found an exact template match 5y2c_A.
I0127 11:55:40.993796 47607713561088 templates.py:267] Found an exact template match 5cuk_A.
I0127 11:55:42.017782 47607713561088 templates.py:267] Found an exact template match 4a5q_E.
I0127 11:55:42.155383 47607713561088 templates.py:267] Found an exact template match 5y2b_A.
I0127 11:55:42.305338 47607713561088 templates.py:267] Found an exact template match 4lgx_A.
I0127 11:55:42.687880 47607713561088 templates.py:267] Found an exact template match 4w5u_A.
I0127 11:55:42.827735 47607713561088 templates.py:267] Found an exact template match 6jav_A.
I0127 11:55:43.341216 47607713561088 templates.py:267] Found an exact template match 3cz8_A.
I0127 11:55:43.349645 47607713561088 templates.py:267] Found an exact template match 3cz8_B.
I0127 11:55:43.358644 47607713561088 pipeline.py:234] Uniref90 MSA size: 2 sequences.
I0127 11:55:43.358720 47607713561088 pipeline.py:235] BFD MSA size: 1 sequences.
I0127 11:55:43.358756 47607713561088 pipeline.py:236] MGnify MSA size: 2 sequences.
I0127 11:55:43.358790 47607713561088 pipeline.py:237] Final (deduplicated) MSA size: 2 sequences.
I0127 11:55:43.358978 47607713561088 pipeline.py:239] Total number of templates (NB: this can include bad templates and is later filtered to top 4): 20.
I0127 11:55:43.363679 47607713561088 run_alphafold.py:191] Running model model_1_pred_0 on query
I0127 11:55:46.180077 47607713561088 model.py:165] Running predict with shape(feat) = {'aatype': (4, 68), 'residue_index': (4, 68), 'seq_length': (4,), 'template_aatype': (4, 4, 68), 'template_all_atom_masks': (4, 4, 68, 37), 'template_all_atom_positions': (4, 4, 68, 37, 3), 'template_sum_probs': (4, 4, 1), 'is_distillation': (4,), 'seq_mask': (4, 68), 'msa_mask': (4, 508, 68), 'msa_row_mask': (4, 508), 'random_crop_to_size_seed': (4, 2), 'template_mask': (4, 4), 'template_pseudo_beta': (4, 4, 68, 3), 'template_pseudo_beta_mask': (4, 4, 68), 'atom14_atom_exists': (4, 68, 14), 'residx_atom14_to_atom37': (4, 68, 14), 'residx_atom37_to_atom14': (4, 68, 37), 'atom37_atom_exists': (4, 68, 37), 'extra_msa': (4, 5120, 68), 'extra_msa_mask': (4, 5120, 68), 'extra_msa_row_mask': (4, 5120), 'bert_mask': (4, 508, 68), 'true_msa': (4, 508, 68), 'extra_has_deletion': (4, 5120, 68), 'extra_deletion_value': (4, 5120, 68), 'msa_feat': (4, 508, 68, 49), 'target_feat': (4, 68, 22)}
I0127 11:57:47.712098 47607713561088 model.py:175] Output shape was {'distogram': {'bin_edges': (63,), 'logits': (68, 68, 64)}, 'experimentally_resolved': {'logits': (68, 37)}, 'masked_msa': {'logits': (508, 68, 23)}, 'predicted_lddt': {'logits': (68, 50)}, 'structure_module': {'final_atom_mask': (68, 37), 'final_atom_positions': (68, 37, 3)}, 'plddt': (68,), 'ranking_confidence': ()}
I0127 11:57:47.712713 47607713561088 run_alphafold.py:203] Total JAX model model_1_pred_0 on query predict time (includes compilation time, see --benchmark): 121.5s
I0127 11:58:00.912315 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {<Residue 67 (GLU) of chain 0>: ['OXT']}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 11:58:01.006034 47607713561088 amber_minimize.py:408] Minimizing protein, attempt 1 of 100.
I0127 11:58:01.227611 47607713561088 amber_minimize.py:69] Restraining 574 / 1170 particles.
I0127 11:58:03.770199 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 11:58:05.229933 47607713561088 amber_minimize.py:500] Iteration completed: Einit 771.01 Efinal -2142.23 Time 2.00 s num residue violations 0 num residue exclusions 0
I0127 11:58:05.653247 47607713561088 run_alphafold.py:191] Running model model_2_pred_0 on query
I0127 11:58:07.032880 47607713561088 model.py:165] Running predict with shape(feat) = {'aatype': (4, 68), 'residue_index': (4, 68), 'seq_length': (4,), 'template_aatype': (4, 4, 68), 'template_all_atom_masks': (4, 4, 68, 37), 'template_all_atom_positions': (4, 4, 68, 37, 3), 'template_sum_probs': (4, 4, 1), 'is_distillation': (4,), 'seq_mask': (4, 68), 'msa_mask': (4, 508, 68), 'msa_row_mask': (4, 508), 'random_crop_to_size_seed': (4, 2), 'template_mask': (4, 4), 'template_pseudo_beta': (4, 4, 68, 3), 'template_pseudo_beta_mask': (4, 4, 68), 'atom14_atom_exists': (4, 68, 14), 'residx_atom14_to_atom37': (4, 68, 14), 'residx_atom37_to_atom14': (4, 68, 37), 'atom37_atom_exists': (4, 68, 37), 'extra_msa': (4, 1024, 68), 'extra_msa_mask': (4, 1024, 68), 'extra_msa_row_mask': (4, 1024), 'bert_mask': (4, 508, 68), 'true_msa': (4, 508, 68), 'extra_has_deletion': (4, 1024, 68), 'extra_deletion_value': (4, 1024, 68), 'msa_feat': (4, 508, 68, 49), 'target_feat': (4, 68, 22)}
I0127 12:00:04.546868 47607713561088 model.py:175] Output shape was {'distogram': {'bin_edges': (63,), 'logits': (68, 68, 64)}, 'experimentally_resolved': {'logits': (68, 37)}, 'masked_msa': {'logits': (508, 68, 23)}, 'predicted_lddt': {'logits': (68, 50)}, 'structure_module': {'final_atom_mask': (68, 37), 'final_atom_positions': (68, 37, 3)}, 'plddt': (68,), 'ranking_confidence': ()}
I0127 12:00:04.547415 47607713561088 run_alphafold.py:203] Total JAX model model_2_pred_0 on query predict time (includes compilation time, see --benchmark): 117.5s
I0127 12:00:08.543631 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {<Residue 67 (GLU) of chain 0>: ['OXT']}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:00:08.651145 47607713561088 amber_minimize.py:408] Minimizing protein, attempt 1 of 100.
I0127 12:00:08.860064 47607713561088 amber_minimize.py:69] Restraining 574 / 1170 particles.
I0127 12:00:10.645244 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:00:10.823759 47607713561088 amber_minimize.py:500] Iteration completed: Einit 732.75 Efinal -2225.50 Time 1.03 s num residue violations 0 num residue exclusions 0
I0127 12:00:11.419507 47607713561088 run_alphafold.py:191] Running model model_3_pred_0 on query
I0127 12:00:12.611460 47607713561088 model.py:165] Running predict with shape(feat) = {'aatype': (4, 68), 'residue_index': (4, 68), 'seq_length': (4,), 'is_distillation': (4,), 'seq_mask': (4, 68), 'msa_mask': (4, 512, 68), 'msa_row_mask': (4, 512), 'random_crop_to_size_seed': (4, 2), 'atom14_atom_exists': (4, 68, 14), 'residx_atom14_to_atom37': (4, 68, 14), 'residx_atom37_to_atom14': (4, 68, 37), 'atom37_atom_exists': (4, 68, 37), 'extra_msa': (4, 5120, 68), 'extra_msa_mask': (4, 5120, 68), 'extra_msa_row_mask': (4, 5120), 'bert_mask': (4, 512, 68), 'true_msa': (4, 512, 68), 'extra_has_deletion': (4, 5120, 68), 'extra_deletion_value': (4, 5120, 68), 'msa_feat': (4, 512, 68, 49), 'target_feat': (4, 68, 22)}
I0127 12:01:47.091197 47607713561088 model.py:175] Output shape was {'distogram': {'bin_edges': (63,), 'logits': (68, 68, 64)}, 'experimentally_resolved': {'logits': (68, 37)}, 'masked_msa': {'logits': (512, 68, 23)}, 'predicted_lddt': {'logits': (68, 50)}, 'structure_module': {'final_atom_mask': (68, 37), 'final_atom_positions': (68, 37, 3)}, 'plddt': (68,), 'ranking_confidence': ()}
I0127 12:01:47.091758 47607713561088 run_alphafold.py:203] Total JAX model model_3_pred_0 on query predict time (includes compilation time, see --benchmark): 94.5s
I0127 12:01:50.797540 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {<Residue 67 (GLU) of chain 0>: ['OXT']}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:01:50.903615 47607713561088 amber_minimize.py:408] Minimizing protein, attempt 1 of 100.
I0127 12:01:51.603977 47607713561088 amber_minimize.py:69] Restraining 574 / 1170 particles.
I0127 12:01:53.237743 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:01:53.382962 47607713561088 amber_minimize.py:500] Iteration completed: Einit 1591.98 Efinal -2152.65 Time 1.38 s num residue violations 0 num residue exclusions 0
I0127 12:01:53.433610 47607713561088 run_alphafold.py:191] Running model model_4_pred_0 on query
I0127 12:01:54.805275 47607713561088 model.py:165] Running predict with shape(feat) = {'aatype': (4, 68), 'residue_index': (4, 68), 'seq_length': (4,), 'is_distillation': (4,), 'seq_mask': (4, 68), 'msa_mask': (4, 512, 68), 'msa_row_mask': (4, 512), 'random_crop_to_size_seed': (4, 2), 'atom14_atom_exists': (4, 68, 14), 'residx_atom14_to_atom37': (4, 68, 14), 'residx_atom37_to_atom14': (4, 68, 37), 'atom37_atom_exists': (4, 68, 37), 'extra_msa': (4, 5120, 68), 'extra_msa_mask': (4, 5120, 68), 'extra_msa_row_mask': (4, 5120), 'bert_mask': (4, 512, 68), 'true_msa': (4, 512, 68), 'extra_has_deletion': (4, 5120, 68), 'extra_deletion_value': (4, 5120, 68), 'msa_feat': (4, 512, 68, 49), 'target_feat': (4, 68, 22)}
I0127 12:03:17.109129 47607713561088 model.py:175] Output shape was {'distogram': {'bin_edges': (63,), 'logits': (68, 68, 64)}, 'experimentally_resolved': {'logits': (68, 37)}, 'masked_msa': {'logits': (512, 68, 23)}, 'predicted_lddt': {'logits': (68, 50)}, 'structure_module': {'final_atom_mask': (68, 37), 'final_atom_positions': (68, 37, 3)}, 'plddt': (68,), 'ranking_confidence': ()}
I0127 12:03:17.109581 47607713561088 run_alphafold.py:203] Total JAX model model_4_pred_0 on query predict time (includes compilation time, see --benchmark): 82.3s
I0127 12:03:20.810336 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {<Residue 67 (GLU) of chain 0>: ['OXT']}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:03:20.916513 47607713561088 amber_minimize.py:408] Minimizing protein, attempt 1 of 100.
I0127 12:03:21.116576 47607713561088 amber_minimize.py:69] Restraining 574 / 1170 particles.
I0127 12:03:22.792131 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:03:22.936354 47607713561088 amber_minimize.py:500] Iteration completed: Einit 1333.07 Efinal -2085.70 Time 0.96 s num residue violations 0 num residue exclusions 0
I0127 12:03:22.988237 47607713561088 run_alphafold.py:191] Running model model_5_pred_0 on query
I0127 12:03:24.791438 47607713561088 model.py:165] Running predict with shape(feat) = {'aatype': (4, 68), 'residue_index': (4, 68), 'seq_length': (4,), 'is_distillation': (4,), 'seq_mask': (4, 68), 'msa_mask': (4, 512, 68), 'msa_row_mask': (4, 512), 'random_crop_to_size_seed': (4, 2), 'atom14_atom_exists': (4, 68, 14), 'residx_atom14_to_atom37': (4, 68, 14), 'residx_atom37_to_atom14': (4, 68, 37), 'atom37_atom_exists': (4, 68, 37), 'extra_msa': (4, 1024, 68), 'extra_msa_mask': (4, 1024, 68), 'extra_msa_row_mask': (4, 1024), 'bert_mask': (4, 512, 68), 'true_msa': (4, 512, 68), 'extra_has_deletion': (4, 1024, 68), 'extra_deletion_value': (4, 1024, 68), 'msa_feat': (4, 512, 68, 49), 'target_feat': (4, 68, 22)}
I0127 12:04:56.475114 47607713561088 model.py:175] Output shape was {'distogram': {'bin_edges': (63,), 'logits': (68, 68, 64)}, 'experimentally_resolved': {'logits': (68, 37)}, 'masked_msa': {'logits': (512, 68, 23)}, 'predicted_lddt': {'logits': (68, 50)}, 'structure_module': {'final_atom_mask': (68, 37), 'final_atom_positions': (68, 37, 3)}, 'plddt': (68,), 'ranking_confidence': ()}
I0127 12:04:56.475727 47607713561088 run_alphafold.py:203] Total JAX model model_5_pred_0 on query predict time (includes compilation time, see --benchmark): 91.7s
I0127 12:05:00.706408 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {<Residue 67 (GLU) of chain 0>: ['OXT']}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:05:00.817349 47607713561088 amber_minimize.py:408] Minimizing protein, attempt 1 of 100.
I0127 12:05:01.640055 47607713561088 amber_minimize.py:69] Restraining 574 / 1170 particles.
I0127 12:05:03.474953 47607713561088 amber_minimize.py:178] alterations info: {'nonstandard_residues': [], 'removed_heterogens': set(), 'missing_residues': {}, 'missing_heavy_atoms': {}, 'missing_terminals': {}, 'Se_in_MET': [], 'removed_chains': {0: []}}
I0127 12:05:03.623641 47607713561088 amber_minimize.py:500] Iteration completed: Einit 1868.49 Efinal -2117.62 Time 1.63 s num residue violations 0 num residue exclusions 0
I0127 12:05:03.693668 47607713561088 run_alphafold.py:277] Final timings for query: {'features': 991.8286077976227, 'process_features_model_1_pred_0': 2.815833806991577, 'predict_and_compile_model_1_pred_0': 121.5330913066864, 'relax_model_1_pred_0': 14.062286376953125, 'process_features_model_2_pred_0': 1.3792037963867188, 'predict_and_compile_model_2_pred_0': 117.51480436325073, 'relax_model_2_pred_0': 5.612551212310791, 'process_features_model_3_pred_0': 1.1915929317474365, 'predict_and_compile_model_3_pred_0': 94.48047041893005, 'relax_model_3_pred_0': 5.277076721191406, 'process_features_model_4_pred_0': 1.3709683418273926, 'predict_and_compile_model_4_pred_0': 82.30484223365784, 'relax_model_4_pred_0': 4.778950452804565, 'process_features_model_5_pred_0': 1.802929162979126, 'predict_and_compile_model_5_pred_0': 91.68440127372742, 'relax_model_5_pred_0': 5.84104323387146}
more run_locally.bash
#!/bin/bash
#module load alphafold/2.3.1-Python-3.8.0
date=`printf '%(%Y-%m-%d)T\n' -1`
my_gpus=`/usr/local/bin/find_my_gpus.pl`
run_alphafold.sh -d /path/to/alphafold database -o ./dummy_test -m monomer -f /path/to/alphafold/2.3.1-Python-3.8.0/example/query.fasta -t $date -a $my_gpus
Hello,
I am using v2.3.1 of alphafold. I've installed it inside conda environment by combining your conda instructions with the https://github.com/deepmind/alphafold/archive/refs/tags/v2.3.1.tar.gz distro.
When I run a test example I am getting this error somewhere close to the end of the pipeline (which takes a few minutes to run):
Does this have to do with incompatible jax/jaxlib versions? This is what I have right now:
Please let me know how to proceed. Thank you!