I can't get past this error with run_classifier.py
AssertionError: Nothing except the root object matched a checkpointed value. Typically this means that the checkpoint does not match the Python program. The following objects have no matching checkpointed value: [MirroredVariable:{
0 /job:localhost/replica:0/task:0/device:GPU:0: <tf.Variable 'albert_model/encoder/shared_layer/self_attention/value/bias:0' shape=(1024,) dtype=float32, numpy=array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)> ...
Below is my call of the script. I am only testing the workflow so I pretrained for 1 epoch. I made a custom task for my particular use case.
I can't get past this error with run_classifier.py
AssertionError: Nothing except the root object matched a checkpointed value. Typically this means that the checkpoint does not match the Python program. The following objects have no matching checkpointed value: [MirroredVariable:{ 0 /job:localhost/replica:0/task:0/device:GPU:0: <tf.Variable 'albert_model/encoder/shared_layer/self_attention/value/bias:0' shape=(1024,) dtype=float32, numpy=array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)> ...
Below is my call of the script. I am only testing the workflow so I pretrained for 1 epoch. I made a custom task for my particular use case.
ALBERT_CONFIG=$HOME/idbd-bio-dev/top-binner-albert/data/configs/config_10mers_tf2_2.json
EVAL=$HOME/mnt/corpuses/finetune_corpus_10mers_test/fine_tune_tf_records/eval.tfrecord
TRAIN=$HOME/mnt/corpuses/finetune_corpus_10mers_test/fine_tune_tf_records/training.tfrecord
META=$HOME/mnt/corpuses/finetune_corpus_10mers_test/fine_tune_tf_records/metadata.txt
OUTPUT_DIR=$HOME/mnt/models/albert_finetune_10mer_15_len
INIT_CHKPNT=$HOME/mnt/models/albert_pretrain_10mer_tf2_15_len/ctl_step_31250.ckpt-1
VOCAB=$HOME/mnt/vocab/10mers.vocab
SPM_MODEL=$HOME/mnt/vocab/10mers.model
export PYTHONPATH=$PYTHONPATH:../../albert_tf2
cd ../../albert_tf2
python run_classifer.py \
--albert_config_file=$ALBERT_CONFIG \
--eval_data_path=$EVAL \
--input_meta_data_path=$META \
--train_data_path=$TRAIN \
--strategy_type=mirror \
--output_dir=$OUTPUT_DIR \
--vocab_file=$VOCAB \
--spm_model_file=$SPM_MODEL \
--do_train=True \
--do_eval=True \
--do_predict=False \
--max_seq_length=15 \
--optimizer=AdamW \
--task_name=GENOMIC \
--train_batch_size=32 \
--init_checkpoint=$INIT_CHKPNT