kennymckormick / pyskl

A toolbox for skeleton-based action recognition.
Apache License 2.0
984 stars 186 forks source link

KeyError: 'test_mode' #249

Open followingcode opened 3 months ago

followingcode commented 3 months ago

Traceback (most recent call last): File "demo/demo_skeleton.py", line 314, in main() File "demo/demo_skeleton.py", line 293, in main results = inference_recognizer(model, fake_anno) File "/root/pyskl/pyskl/apis/inference.py", line 163, in inference_recognizer data = test_pipeline(data) File "/root/pyskl/pyskl/datasets/pipelines/compose.py", line 41, in call data = t(data) File "/root/pyskl/pyskl/datasets/pipelines/multi_modality.py", line 65, in call if results['test_mode']: KeyError: 'test_mode'

followingcode commented 3 months ago

The --config parameter in demo/demo_skeleton.py is default='configs/rgbpose_conv3d/rgbpose_conv3d.py', and the --checkpoint parameter is default='https://download.openmmlab.com/mmaction/pyskl/ckpt/ rgbpose_conv3d/rgbpose_conv3d.pth'

Run the Python demo/demo_skeleton.py demo/ntu_sample.avi demo/demo.mp4 command line and find an error KeyError: 'test_mode'

followingcode commented 3 months ago

@kennymckormick

followingcode commented 2 months ago

The code from lines 258 to 265 of demo/demo_skeleton.py is modified as follows:

fake_anno = dict(
frame_dir='',
label=-1,
img_shape=(h, w),
original_shape=(h, w),
start_index=0,
modality='Pose',
total_frames=num_frame,
test_mode = True
)
print('fake_anno', fake_anno)
if not fake_anno['frame_dir']:
fake_anno['frame_dir'] = args.video
print(fake_anno['frame_dir'])

and pyskl/pyskl/apis/inference.py line 173 deleted And lines 173 to 176 of pyskl/pyskl/apis/inference.py need to be changed to:

output = model(return_loss=False,**data)
        print('Model output' , output)

        if isinstance(output[0], dict):
            if 'pose' in output[0] and 'rgb' in output[0]:
                    # 取出 rgb 和 pose 数据
                    rgb_data = output[0]['rgb']
                    pose_data = output[0]['pose']

                    # 比较两种模态,取最大值
                    scores = np.maximum(rgb_data, pose_data)
            else:
                 raise ValueError('输出字典不包括‘rgb’和‘pose’')
        else:
             scores = output[0]

        print('scores type ', type(scores))
        print('socres shape', scores.shape)
        print(scores.ndim)
        if scores.ndim == 1:
            num_classes = scores.shape[0]
            print(num_classes)
        elif scores.ndim > 1:
            num_classes = scores.shape[-1]
        else:
            raise ValueError(f'Unexpected shape: {scores.shape}')