I am trying to train the model on custom dataset but I got this error. The expected shape and found shape are the same. I don't understand
WARNING:tensorflow:`period` argument is deprecated. Please use `save_freq` to specify the frequency in number of batches seen.
Epoch 1/5
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-43-c72e19685f40>](https://localhost:8080/#) in <module>
21 train_ds,
22 validation_data=val_ds,
---> 23 epochs=epochs,
24 )
1 frames
[/usr/local/lib/python3.7/dist-packages/keras/engine/training.py](https://localhost:8080/#) in tf__train_function(iterator)
13 try:
14 do_return = True
---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
16 except:
17 do_return = False
ValueError: in user code:
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 889, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py", line 264, in assert_input_compatibility
raise ValueError(f'Input {input_index} of layer "{layer_name}" is '
ValueError: Input 0 of layer "model_2" is incompatible with the layer: expected shape=(None, 299, 299, 3), found shape=(None, 229, 229, 3)
Here is how I create the model
base_model = create_model(num_classes=2, dropout_prob=0.2, weights="imagenet", include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
opt = Adam(learning_rate=0.001)
model.compile(optimizer=opt,loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.summary()
#Train the model
epochs = 5
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
)
I am trying to train the model on custom dataset but I got this error. The expected shape and found shape are the same. I don't understand
Here is how I create the model