Open csitaula opened 5 years ago
Both should be possible with nvidia-smi
$ nvidia-smi
Mon Aug 5 08:33:31 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... On | 00000000:65:00.0 Off | N/A |
| 48% 80C P2 231W / 250W | 5413MiB / 11177MiB | 94% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 11610 C ...e/phmay/miniconda3/envs/py36/bin/python 2701MiB |
| 0 11852 C ...e/phmay/miniconda3/envs/py36/bin/python 2701MiB |
+-----------------------------------------------------------------------------+
I am wondering to calculate the cost (computation cost and Memory) per batch of my data on VGG. I think this idea does not work for me.
Both should be possible with
nvidia-smi
$ nvidia-smi Mon Aug 5 08:33:31 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 108... On | 00000000:65:00.0 Off | N/A | | 48% 80C P2 231W / 250W | 5413MiB / 11177MiB | 94% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 11610 C ...e/phmay/miniconda3/envs/py36/bin/python 2701MiB | | 0 11852 C ...e/phmay/miniconda3/envs/py36/bin/python 2701MiB | +-----------------------------------------------------------------------------+
I am wondering how to calculate the power consumption (watt) and memory (MB) of deep learning model designed in keras? Can anybody help me in such as case? Thanks in advance.