Closed mattdangerw closed 1 month ago
model.summary()
image_size
2. is just to allow a more consistent way to set the input shape across tasks. We now have:
2.
text_classifier = keras_hub.models.TextClassifer.from_preset( "bert_base_en", ) text_classifier.preprocessor.sequence_length = 256 image_classifier = keras_hub.models.TextClassifer.from_preset( "bert_base_en", ) image_classifier.preprocessor.image_size = (256, 256) multi_modal_lm = keras_hub.models.CausalLM.from_preset( "some_preset", ) multi_modal_lm.preprocessor.sequence_length = 256 multi_modal_lm.preprocessor.image_size = (256, 256)
model.summary()
image_size
directly on a preprocessing layer.2.
is just to allow a more consistent way to set the input shape across tasks. We now have: