keras-team / keras

Deep Learning for humans
http://keras.io/
Apache License 2.0
62.05k stars 19.48k forks source link

model.fit() InvalidArgumentError #16406

Closed rozerinyildiz closed 2 years ago

rozerinyildiz commented 2 years ago

The code is:

model.fit(x=train_batches, steps_per_epoch=len(train_batches), validation_data=valid_batches, validation_steps=len(valid_batches), epochs=10, verbose=2 )

The error message is:

Epoch 1/10

InvalidArgumentError Traceback (most recent call last) in () 5 validation_steps=len(valid_batches), 6 epochs=10, ----> 7 verbose=2 8 )

1 frames /usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py in error_handler(*args, **kwargs) 65 except Exception as e: # pylint: disable=broad-except 66 filtered_tb = _process_traceback_frames(e.traceback) ---> 67 raise e.with_traceback(filtered_tb) from None 68 finally: 69 del filtered_tb

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 53 ctx.ensure_initialized() 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, ---> 55 inputs, attrs, num_outputs) 56 except core._NotOkStatusException as e: 57 if name is not None:

InvalidArgumentError: Graph execution error:

Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last): File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/usr/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in app.launch_new_instance() File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance app.start() File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start self.io_loop.start() File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start self.asyncio_loop.run_forever() File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever self._run_once() File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once handle._run() File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run self._context.run(self._callback, self._args) File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events handler_func(fileobj, events) File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper return fn(args, kwargs) File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 452, in _handle_events self._handle_recv() File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 481, in _handle_recv self._run_callback(callback, msg) File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 431, in _run_callback callback(*args, *kwargs) File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper return fn(args, kwargs) File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher return self.dispatch_shell(stream, msg) File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell handler(stream, idents, msg) File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request user_expressions, allow_stdin) File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell return super(ZMQInteractiveShell, self).run_cell(*args, *kwargs) File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell interactivity=interactivity, compiler=compiler, result=result) File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2828, in run_ast_nodes if self.run_code(code, result): File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "", line 8, in verbose=2 File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler return fn(args, kwargs) File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1384, in fit tmp_logs = self.train_function(iterator) File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function return step_function(self, iterator) File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step outputs = model.train_step(data) File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 860, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 919, in compute_loss y, y_pred, sample_weight, regularization_losses=self.losses) File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 201, in call loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 141, in call losses = call_fn(y_true, y_pred) File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 245, in call return ag_fn(y_true, y_pred, self._fn_kwargs) File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1790, in categorical_crossentropy y_true, y_pred, from_logits=from_logits, axis=axis) File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 5099, in categorical_crossentropy labels=target, logits=output, axis=axis) Node: 'categorical_crossentropy/softmax_cross_entropy_with_logits' logits and labels must be broadcastable: logits_size=[10,2] labels_size=[10,4] [[{{node categorical_crossentropy/softmax_cross_entropy_with_logits}}]] [Op:__inference_train_function_716]

rozerinyildiz commented 2 years ago

Thats the error message that i got. Can you pls suggest anything?

gadagashwini commented 2 years ago

@rozerinyildiz, As the error suggests,

InvalidArgumentError Traceback (most recent call last) in () 5 validation_steps=len(valid_batches), 6 epochs=10, ----> 7 verbose=2

InvalidArgumentError, verbose =2 when used with ParameterServerStrategy .

Model.fit() function should be model.fit(x=train_batches, steps_per_epoch=len(train_batches), validation_data=valid_batches, validation_steps=len(valid_batches), epochs=10, verbose=1 )

google-ml-butler[bot] commented 2 years ago

This issue has been automatically marked as stale because it has no recent activity. It will be closed if no further activity occurs. Thank you.

google-ml-butler[bot] commented 2 years ago

Closing as stale. Please reopen if you'd like to work on this further.

google-ml-butler[bot] commented 2 years ago

Are you satisfied with the resolution of your issue? Yes No

AnandaRauf commented 2 years ago

Same issues: but diffrent code history: history = model.fit( train_generator, epochs=10, validation_data=validation_generator, callbacks=[checkpoint] ) and error message Epoch 1/10 is: Epoch 1/10

InvalidArgumentError Traceback (most recent call last) in () 5 epochs=10, 6 validation_data=validation_generator, ----> 7 callbacks=[checkpoint] 8 )

InvalidArgumentError: Graph execution error:

gadagashwini commented 2 years ago

Hi @AnandaRauf, Could you share your complete code to investigate issue or raise new issue by providing all the information. Thank you!

AkanimohOD19A commented 2 years ago

Here's a similar challenge:

#  Callbacks
callbacks = [ModelCheckpoint('.mdl_wts.hdf5', monitor='val_loss',mode='min',verbose=1, save_best_only=True),
             ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=2, verbose=1, mode='min', min_lr=0.00000000001)]

However, we the following is run

history = model.fit(datagen.flow(x_train, y_train, batch_size=42),validation_data = (x_val,y_val),epochs = 50,callbacks = callbacks)

It throws error:

Epoch 1/50

InvalidArgumentError Traceback (most recent call last) in 7 pass 8 ----> 9 history = model.fit(datagen.flow(x_train, y_train, batch_size=42),validation_data = (x_val,y_val),epochs = 50,callbacks = callbacks)

1 frames /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 53 ctx.ensure_initialized() 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, ---> 55 inputs, attrs, num_outputs) 56 except core._NotOkStatusException as e: 57 if name is not None:

InvalidArgumentError: Graph execution error:

HakanOzaydin commented 2 years ago

Epoch 1/1000 747/879 [========================>.....] - ETA: 19:27 - loss: 2.5615 - acc: 0.5513

UnknownError Traceback (most recent call last)

in 7 steps_per_epoch=steps_per_epoch, 8 validation_data=valid_generator, ----> 9 validation_steps=val_steps_per_epoch).history 1 frames /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 53 ctx.ensure_initialized() 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, ---> 55 inputs, attrs, num_outputs) 56 except core._NotOkStatusException as e: 57 if name is not None: UnknownError: Graph execution error: 2 root error(s) found. (0) UNKNOWN: OSError: image file is truncated (3 bytes not processed) Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/script_ops.py", line 270, in __call__ ret = func(*args) File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py", line 642, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1030, in generator_py_func values = next(generator_state.get_iterator(iterator_id)) File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 831, in wrapped_generator for data in generator_fn(): File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 957, in generator_fn yield x[i] File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 110, in __getitem__ return self._get_batches_of_transformed_samples(index_array) File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 342, in _get_batches_of_transformed_samples keep_aspect_ratio=self.keep_aspect_ratio) File "/usr/local/lib/python3.7/dist-packages/keras/utils/image_utils.py", line 443, in load_img img = img.resize(width_height_tuple, resample) File "/usr/local/lib/python3.7/dist-packages/PIL/Image.py", line 1886, in resize self.load() File "/usr/local/lib/python3.7/dist-packages/PIL/ImageFile.py", line 247, in load "(%d bytes not processed)" % len(b) OSError: image file is truncated (3 bytes not processed) [[{{node PyFunc}}]] [[IteratorGetNext]] [[categorical_crossentropy/softmax_cross_entropy_with_logits/Shape_2/_6]] (1) UNKNOWN: OSError: image file is truncated (3 bytes not processed) Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/script_ops.py", line 270, in __call__ ret = func(*args) File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py", line 642, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1030, in generator_py_func values = next(generator_state.get_iterator(iterator_id)) File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 831, in wrapped_generator for data in generator_fn(): File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 957, in generator_fn yield x[i] File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 110, in __getitem__ return self._get_batches_of_transformed_samples(index_array) File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 342, in _get_batches_of_transformed_samples keep_aspect_ratio=self.keep_aspect_ratio) File "/usr/local/lib/python3.7/dist-packages/keras/utils/image_utils.py", line 443, in load_img img = img.resize(width_height_tuple, resample) File "/usr/local/lib/python3.7/dist-packages/PIL/Image.py", line 1886, in resize self.load() File "/usr/local/lib/python3.7/dist-packages/PIL/ImageFile.py", line 247, in load "(%d bytes not processed)" % len(b) OSError: image file is truncated (3 bytes not processed) [[{{node PyFunc}}]] [[IteratorGetNext]] 0 successful operations. 0 derived errors ignored. [Op:__inference_train_function_18084] I often get this error
meleayi commented 1 year ago

image image please support me ?

YameenV commented 1 year ago

Epoch 1/1000

747/879 [========================>.....] - ETA: 19:27 - loss: 2.5615 - acc: 0.5513

UnknownError Traceback (most recent call last) in 7 steps_per_epoch=steps_per_epoch, 8 validation_data=valid_generator, ----> 9 validation_steps=val_steps_per_epoch).history

1 frames /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 53 ctx.ensure_initialized() 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, ---> 55 inputs, attrs, num_outputs) 56 except core._NotOkStatusException as e: 57 if name is not None:

UnknownError: Graph execution error:

2 root error(s) found. (0) UNKNOWN: OSError: image file is truncated (3 bytes not processed) Traceback (most recent call last):

File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/script_ops.py", line 270, in call ret = func(*args)

File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py", line 642, in wrapper return func(*args, **kwargs)

File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1030, in generator_py_func values = next(generator_state.get_iterator(iterator_id))

File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 831, in wrapped_generator for data in generator_fn():

File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 957, in generator_fn yield x[i]

File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 110, in getitem return self._get_batches_of_transformed_samples(index_array)

File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 342, in _get_batches_of_transformed_samples keep_aspect_ratio=self.keep_aspect_ratio)

File "/usr/local/lib/python3.7/dist-packages/keras/utils/image_utils.py", line 443, in load_img img = img.resize(width_height_tuple, resample)

File "/usr/local/lib/python3.7/dist-packages/PIL/Image.py", line 1886, in resize self.load()

File "/usr/local/lib/python3.7/dist-packages/PIL/ImageFile.py", line 247, in load "(%d bytes not processed)" % len(b)

OSError: image file is truncated (3 bytes not processed)

 [[{{node PyFunc}}]]
 [[IteratorGetNext]]
 [[categorical_crossentropy/softmax_cross_entropy_with_logits/Shape_2/_6]]

(1) UNKNOWN: OSError: image file is truncated (3 bytes not processed) Traceback (most recent call last):

File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/script_ops.py", line 270, in call ret = func(*args)

File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py", line 642, in wrapper return func(*args, **kwargs)

File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1030, in generator_py_func values = next(generator_state.get_iterator(iterator_id))

File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 831, in wrapped_generator for data in generator_fn():

File "/usr/local/lib/python3.7/dist-packages/keras/engine/data_adapter.py", line 957, in generator_fn yield x[i]

File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 110, in getitem return self._get_batches_of_transformed_samples(index_array)

File "/usr/local/lib/python3.7/dist-packages/keras/preprocessing/image.py", line 342, in _get_batches_of_transformed_samples keep_aspect_ratio=self.keep_aspect_ratio)

File "/usr/local/lib/python3.7/dist-packages/keras/utils/image_utils.py", line 443, in load_img img = img.resize(width_height_tuple, resample)

File "/usr/local/lib/python3.7/dist-packages/PIL/Image.py", line 1886, in resize self.load()

File "/usr/local/lib/python3.7/dist-packages/PIL/ImageFile.py", line 247, in load "(%d bytes not processed)" % len(b)

OSError: image file is truncated (3 bytes not processed)

 [[{{node PyFunc}}]]
 [[IteratorGetNext]]

0 successful operations. 0 derived errors ignored. [Op:__inference_train_function_18084]

I often get this error

what will be the solution for this ??

abhinav52000 commented 12 months ago

Everyone check once that you might have different class numbers in the dataset compared to what you have made a model with different numbers of classes in the dataset.

Safi2025 commented 6 months ago

please can you help me, this is my current error : Epoch 1/50

InvalidArgumentError Traceback (most recent call last) Input In [44], in <cell line: 1>() ----> 1 history = model.fit(train_generator, validation_data=validation_generator, epochs=50)

File ~\anaconda3\lib\site-packages\keras\src\utils\traceback_utils.py:70, in error_handler(*args, **kwargs) 60 @keras_export("keras.config.is_traceback_filtering_enabled") 61 def is_traceback_filtering_enabled(): 62 """Check if traceback filtering is enabled. 63 64 Raw Keras tracebacks (also known as stack traces) 65 involve many internal frames, which can be 66 challenging to read through, while not being actionable for end users. 67 By default, Keras filters internal frames in most exceptions that it 68 raises, to keep traceback short, readable, and focused on what's 69 actionable for you (your own code). ---> 70 71 See also keras.config.enable_traceback_filtering() and 72 keras.config.disable_traceback_filtering(). 73 74 If you have previously disabled traceback filtering via 75 keras.config.disable_traceback_filtering(), you can re-enable it via 76 keras.config.enable_traceback_filtering(). 77 78 Returns: 79 Boolean, True if traceback filtering is enabled, 80 and False otherwise. 81 """ 82 return global_state.get_global_attribute("traceback_filtering", True)

File ~\anaconda3\lib\site-packages\tensorflow\python\eager\execute.py:53, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 51 try: 52 ctx.ensure_initialized() ---> 53 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, 54 inputs, attrs, num_outputs) 55 except core._NotOkStatusException as e: 56 if name is not None:

InvalidArgumentError: Graph execution error:

Detected at node 'gradient_tape/binary_crossentropy/logistic_loss/mul/BroadcastGradientArgs' defined at (most recent call last): File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel_launcher.py", line 16, in app.launch_new_instance() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\traitlets\config\application.py", line 846, in launch_instance app.start() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 677, in start self.io_loop.start() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\tornado\platform\asyncio.py", line 199, in start self.asyncio_loop.run_forever() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\asyncio\base_events.py", line 601, in run_forever self._run_once() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\asyncio\base_events.py", line 1905, in _run_once handle._run() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\asyncio\events.py", line 80, in _run self._context.run(self._callback, self._args) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 471, in dispatch_queue await self.process_one() File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 460, in process_one await dispatch(args) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 367, in dispatch_shell await result File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 662, in execute_request reply_content = await reply_content File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 360, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 532, in run_cell return super().run_cell(*args, *kwargs) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2863, in run_cell result = self._run_cell( File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2909, in _run_cell return runner(coro) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner coro.send(None) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3106, in run_cell_async has_raised = await self.run_ast_nodes(code_ast.body, cell_name, File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3309, in run_ast_nodes if await self.runcode(code, result, async=asy): File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3369, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "C:\Users\GLOBAL SERVICE PLUS\AppData\Local\Temp\ipykernel_6276\3907197578.py", line 1, in <cell line: 1> history = model.fit(train_generator, validation_data=validation_generator, epochs=50) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler return fn(args, **kwargs) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\engine\training.py", line 1742, in fit tmp_logs = self.train_function(iterator) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\engine\training.py", line 1338, in train_function return step_function(self, iterator) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\engine\training.py", line 1322, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\engine\training.py", line 1303, in run_step outputs = model.train_step(data) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\engine\training.py", line 1084, in train_step self.optimizer.minimize(loss, self.trainable_variables, tape=tape) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\optimizers\optimizer.py", line 543, in minimize grads_and_vars = self.compute_gradients(loss, var_list, tape) File "C:\Users\GLOBAL SERVICE PLUS\anaconda3\lib\site-packages\keras\src\optimizers\optimizer.py", line 276, in compute_gradients grads = tape.gradient(loss, var_list) Node: 'gradient_tape/binary_crossentropy/logistic_loss/mul/BroadcastGradientArgs' Incompatible shapes: [8,4] vs. [8,2] [[{{node gradient_tape/binary_crossentropy/logistic_loss/mul/BroadcastGradientArgs}}]] [Op:__inference_train_function_4766]

** this is my code : history = model.fit(train_generator, validation_data=validation_generator, epochs=50)

arenran02 commented 5 months ago

i have same problem when i set different output numbers for number of result classes. if you modify number of output layers, its error will be disappeared.

nooruzb commented 5 months ago

I am getting similar error: Input In [11], in <cell line: 12>() 6 layer.trainable = False 8 vgg_model.compile(loss='categorical_crossentropy', 9 optimizer=tf.keras.optimizers.SGD(momentum=0.9, learning_rate=0.001, decay=0.01), 10 metrics=['accuracy']) ---> 12 history = vgg_model.fit(train_generator, 13 epochs=30, 14 batch_size=64, 15 validation_data=test_generator, 16 callbacks=[early_stopping])

What could be wrong here in terms of the parameters?

I am using 128 classes for softmax vgg_model = tf.keras.Sequential(vgg_basemodel.layers[:-1]) vgg_model.add(tf.keras.layers.Dense(128, activation = 'softmax'))