keras-team / keras

Deep Learning for humans
http://keras.io/
Apache License 2.0
62k stars 19.48k forks source link

Keras update after single batch which exceeds the GPU memory #3556

Closed wx405557858 closed 3 years ago

wx405557858 commented 8 years ago

Can keras support to update parameters after a relative large batch size which exceed the GPU memory if feeded in one time? My model now can only be feeded batch_size=4 samples a time due to GPU 12G memory. The loss is difficult to decline when batch_size=4. So I want to update the parameters after 32 samples. Will keras be able to support this? It seems that Caffe can support this. Thanks!

wx405557858 commented 8 years ago

I think it's solved by this https://github.com/BVLC/caffe/pull/1663. It will accumulate the gradient for the whole large batch and update. @fchollet If I implement this part with keras source code, which file should I change, thanks a lot!

wx405557858 commented 8 years ago

I solved this by change the optimizer.py.

the-moliver commented 8 years ago

@wx405557858 I'm curious how you did this. I hacked something together that seems to work, but I'd be interested in a better way. Also it might be useful to have Keras. Here is how I did it below. Basically accum_switch turns to 1 every set number of epochs and the updates either update with the old value or the new: self.updates.append(K.update(m, (1-accum_switch)*m + accum_switch*m_t)) This avoids any logic for the backend to deal with at the expense of some unnecessary calculations (g_prime, etc) that are discarded between actual updates.

class NadamAccum(Optimizer):
    '''
    Nesterov Adam optimizer: Much like Adam is essentially RMSprop with momentum,
    Nadam is Adam RMSprop with Nesterov momentum.

    Default parameters follow those provided in the paper.
    It is recommended to leave the parameters of this optimizer
    at their default values.

    # Arguments
        lr: float >= 0. Learning rate.
        beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
        epsilon: float >= 0. Fuzz factor.

    # References
        - [Nadam report](http://cs229.stanford.edu/proj2015/054_report.pdf)
        - [On the importance of initialization and momentum in deep learning](http://www.cs.toronto.edu/~fritz/absps/momentum.pdf)
    '''
    def __init__(self, lr=0.002, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, schedule_decay=0.004, accum_iters=1, **kwargs):
        super(NadamAccum, self).__init__(**kwargs)
        self.__dict__.update(locals())
        self.iterations = K.variable(0.)
        self.m_schedule = K.variable(1.)
        self.lr = K.variable(lr)
        self.beta_1 = K.variable(beta_1)
        self.beta_2 = K.variable(beta_2)
        self.schedule_decay = schedule_decay
        self.accum_iters = K.variable(accum_iters)

    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = (self.iterations + 1.)/self.accum_iters
        accum_switch = K.floor((self.accum_iters - K.mod(self.iterations + 1., self.accum_iters))/self.accum_iters)
        # Due to the recommendations in [2], i.e. warming momentum schedule
        momentum_cache_t = self.beta_1 * (1. - 0.5 * (K.pow(0.96, t * self.schedule_decay)))
        momentum_cache_t_1 = self.beta_1 * (1. - 0.5 * (K.pow(0.96, (t + 1) * self.schedule_decay)))
        m_schedule_new = self.m_schedule * momentum_cache_t
        m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
        self.updates.append((self.m_schedule, accum_switch*m_schedule_new + (1-accum_switch)*self.m_schedule))

        shapes = [x.shape for x in K.batch_get_value(params)]
        ms = [K.zeros(shape) for shape in shapes]
        vs = [K.zeros(shape) for shape in shapes]
        gs = [K.zeros(shape) for shape in shapes]

        self.weights = [self.iterations] + ms + vs

        for p, gp, m, v, ga in zip(params, grads, ms, vs, gs):

            g = (ga + gp)/self.accum_iters
            # the following equations given in [1]
            g_prime = g / (1. - m_schedule_new)
            m_t = self.beta_1 * m + (1. - self.beta_1) * g
            m_t_prime = m_t / (1. - m_schedule_next)
            v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
            v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
            m_t_bar = (1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime

            self.updates.append(K.update(m, (1-accum_switch)*m + accum_switch*m_t))
            self.updates.append(K.update(v, (1-accum_switch)*v + accum_switch*v_t))
            self.updates.append(K.update(ga, (1-accum_switch)*(ga + gp)))

            p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
            new_p = p_t

            # apply constraints
            if p in constraints:
                c = constraints[p]
                new_p = c(new_p)
            self.updates.append(K.update(p, (1-accum_switch)*p + accum_switch*new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'epsilon': self.epsilon,
                  'schedule_decay': self.schedule_decay,
                  'accum_iters': self.accum_iters}
        base_config = super(NadamAccum, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
wx405557858 commented 8 years ago

@the-moliver Yeah, we did exactly the same! I have a flag calculated by (self.iteration % accum_iters) == 0 . It will turn into 1 after accum_iters batches. I think maybe can write a wrapper to wrap every optimizer and change the updates base on accum_iters. Or just implement each optimizer's _accum version. There's only several optimizers.

class Adam_accumulate(Optimizer):
'''Adam accumulate optimizer.

Default parameters follow those provided in the original paper. Wait for several mini-batch to update

# Arguments
    lr: float >= 0. Learning rate.
    beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
    epsilon: float >= 0. Fuzz factor.

# References
    - [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
'''
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
             epsilon=1e-8, accum_iters=5, **kwargs):
    super(Adam_accumulate, self).__init__(**kwargs)
    self.__dict__.update(locals())
    self.iterations = K.variable(0)
    self.lr = K.variable(lr)
    self.beta_1 = K.variable(beta_1)
    self.beta_2 = K.variable(beta_2)
    self.accum_iters = K.variable(accum_iters)

def get_updates(self, params, constraints, loss):
    grads = self.get_gradients(loss, params)
    self.updates = [(self.iterations, self.iterations + 1)]

    t = self.iterations + 1
    print t.eval()
    lr_t = self.lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))

    ms = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
    vs = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
    gs = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
    self.weights = ms + vs

    for p, g, m, v, gg in zip(params, grads, ms, vs, gs):

        flag = K.equal(self.iterations % self.accum_iters, 0)

        gg_t = (1 - flag) * (gg + g)
        m_t = (self.beta_1 * m) + (1. - self.beta_1) * (gg + flag * g) / self.accum_iters
        v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square((gg + flag * g) / self.accum_iters) 
        p_t = p - flag * lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

        self.updates.append((m, flag * m_t + (1 - flag) * m))
        self.updates.append((v, flag * v_t + (1 - flag) * m))
        self.updates.append((gg, gg_t))

        new_p = p_t
        # apply constraints
        if p in constraints:
            c = constraints[p]
            new_p = c(new_p)
        self.updates.append((p, new_p))
    # print self.updates
    return self.updates

def get_config(self):
    config = {'lr': float(K.get_value(self.lr)),
              'beta_1': float(K.get_value(self.beta_1)),
              'beta_2': float(K.get_value(self.beta_2)),
              'epsilon': self.epsilon}
    base_config = super(Adam_accumulate, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))
raghakot commented 7 years ago

@wx405557858 I tried using your code, the loss seems to explode.

wx405557858 commented 7 years ago

@raghakot It works for my model. I assume it should be universal. Would the loss converge with normal Adam optimizer in your case?

raghakot commented 7 years ago

Yes. It converges with regular Adam. @the-moliver version seems to work too. I have to make a tiny change to your code to cast the flag to float32 (fails to run otherwise due to dtype mismatch on arithmetic operations with flag). This is on bleeding edge keras...maybe something changed? Also, I am using tensorflow backend, if that matters.

wx405557858 commented 7 years ago

@raghakot Thanks for your pointing out. I'm not quite sure what's the exact problem. But it's nice to know the-moliver's solution works for you.

juanlp commented 7 years ago

Set flag = K.cast(flag, dtype='float32') and it works. Thanks wx405557858

soon-will commented 7 years ago

Thank you for your sharing. I am new here, but I have several trouble at first. What is the relation between accum_iters and the final batch_size? @wx405557858 @the-moliver

wx405557858 commented 7 years ago

final batch_size = accum_iters * original batch_size

soon-will commented 7 years ago

Hi, @wx405557858 ,could you please show your optimizers.py? I changed the file just like you did, but ValueError: ('Could not interpret optimizer identifier:', <AdamAccum.AdamAccum object at 0x0000015F1E58DB00>)

andersonzhu commented 7 years ago

@soon-will the optimizers.py is from keras. see here.

jackkwok commented 7 years ago

@wx405557858 what you had: self.updates.append((v, flag v_t + (1 - flag) m))

shouldn't m be v? self.updates.append((v, flag v_t + (1 - flag) v))

malhotraa commented 7 years ago

@the-moliver, I am getting an error K.floor doesnt exist on this line: accum_switch = K.floor((self.accum_iters - K.mod(self.iterations + 1., self.accum_iters))/self.accum_iters)

Was K.floor and K.mod recently removed from Keras backend? Cant find them here: https://github.com/fchollet/keras/tree/master/keras/backend

ironbar commented 7 years ago

@jackkwok On my case without the fix that you suggest I get Nan on loss and metrics. Using the fix it works.

ZFTurbo commented 7 years ago

This feature extremely useful and must be added in official repository.

ZFTurbo commented 7 years ago

Code by @wx405557858 with fixes. I checked it in my project and it seemed to work fine:

from keras.optimizers import Optimizer
from keras import backend as K
import numpy as np

class Adam_accumulate(Optimizer):
    '''Adam accumulate optimizer.

    Default parameters follow those provided in the original paper. Wait for several mini-batch to update

    # Arguments
        lr: float >= 0. Learning rate.
        beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
        epsilon: float >= 0. Fuzz factor.

    # References
        - [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
    '''
    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, accum_iters=10, **kwargs):
        super(Adam_accumulate, self).__init__(**kwargs)
        self.__dict__.update(locals())
        self.iterations = K.variable(0)
        self.lr = K.variable(lr)
        self.beta_1 = K.variable(beta_1)
        self.beta_2 = K.variable(beta_2)
        self.accum_iters = K.variable(accum_iters)

    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))

        ms = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        vs = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        gs = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        self.weights = ms + vs

        for p, g, m, v, gg in zip(params, grads, ms, vs, gs):

            flag = K.equal(self.iterations % self.accum_iters, 0)
            flag = K.cast(flag, dtype='float32')

            gg_t = (1 - flag) * (gg + g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * (gg + flag * g) / self.accum_iters
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square((gg + flag * g) / self.accum_iters)
            p_t = p - flag * lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, flag * m_t + (1 - flag) * m))
            self.updates.append((v, flag * v_t + (1 - flag) * v))
            self.updates.append((gg, gg_t))

            new_p = p_t
            # apply constraints
            if p in constraints:
                c = constraints[p]
                new_p = c(new_p)
            self.updates.append((p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'epsilon': self.epsilon}
        base_config = super(Adam_accumulate, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
alex-kharlamov commented 7 years ago

Thanks @ZFTurbo for the fixes.

This is version of code for Keras 2.0.8 with fixed constraints issue and get_updates parameters.


from keras.optimizers import Optimizer
from keras import backend as K
import numpy as np

class Adam_accumulate(Optimizer):
    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, accum_iters=20, **kwargs):
        super(Adam_accumulate, self).__init__(**kwargs)
        self.__dict__.update(locals())
        self.iterations = K.variable(0)
        self.lr = K.variable(lr)
        self.beta_1 = K.variable(beta_1)
        self.beta_2 = K.variable(beta_2)
        self.accum_iters = K.variable(accum_iters)

    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))

        ms = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        vs = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        gs = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        self.weights = ms + vs

        for p, g, m, v, gg in zip(params, grads, ms, vs, gs):

            flag = K.equal(self.iterations % self.accum_iters, 0)
            flag = K.cast(flag, dtype='float32')

            gg_t = (1 - flag) * (gg + g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * (gg + flag * g) / self.accum_iters
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square((gg + flag * g) / self.accum_iters)
            p_t = p - flag * lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, flag * m_t + (1 - flag) * m))
            self.updates.append((v, flag * v_t + (1 - flag) * v))
            self.updates.append((gg, gg_t))

            new_p = p_t
            # apply constraints
            if getattr(p, 'constraint', None) is not None:
                c = constraints[p]
                new_p = c(new_p)
            self.updates.append((p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'epsilon': self.epsilon}
        base_config = super(Adam_accumulate, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
viig99 commented 7 years ago

Hi Guys, thanks for the previous code, i have been trying to replicate the same for SGD with nestrov,

class SGDAccum(Optimizer):
    """Stochastic gradient descent optimizer.

    Includes support for momentum,
    learning rate decay, and Nesterov momentum.

    # Arguments
        lr: float >= 0. Learning rate.
        momentum: float >= 0. Parameter updates momentum.
        decay: float >= 0. Learning rate decay over each update.
        nesterov: boolean. Whether to apply Nesterov momentum.
    """

    def __init__(self, lr=0.01, momentum=0., decay=0.,
                 nesterov=False, accum_iters=1, **kwargs):
        super(SGDAccum, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.momentum = K.variable(momentum, name='momentum')
            self.decay = K.variable(decay, name='decay')
            self.accum_iters = K.variable(accum_iters)
        self.initial_decay = decay
        self.nesterov = nesterov

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        accum_switch = K.equal(self.iterations % self.accum_iters, 0)
        accum_switch = K.cast(accum_switch, dtype='float32')

        # momentum
        shapes = [K.int_shape(p) for p in params]
        moments = [K.zeros(shape) for shape in shapes]
        temp_grads = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + moments
        for p, cg, m, tg in zip(params, grads, moments, temp_grads):
            g = cg + tg
            v = self.momentum * m - (lr * g / self.accum_iters)  # velocity
            self.updates.append(K.update(m, (1 - accum_switch) * m + accum_switch * v))
            self.updates.append(K.update(tg, (1 - accum_switch) * g))

            if self.nesterov:
                new_p = p + self.momentum * v - (lr * g / self.accum_iters)
            else:
                new_p = p + v

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, (1 - accum_switch) * p + accum_switch * new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'momentum': float(K.get_value(self.momentum)),
                  'decay': float(K.get_value(self.decay)),
                  'nesterov': self.nesterov,
                  'accum_iters': self.accum_iters}
        base_config = super(SGDAccum, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

Can someone please verify that it look's about right ?

ZFTurbo commented 7 years ago

@gamers5a your function doesn't work in latest Keras version. There were to much changes in Adam function between 1.2.1 and 2.0.8 versions. Hope someone fix it as well.

@viig99 I believe your functions works just fine. Here is the logs of 3 runs:

SGD (default, batch=32):

Epoch 1/200
  1/400 [..............................] - ETA: 4011s - loss: 0.6939 - acc: 0.4648
  2/400 [..............................] - ETA: 2864s - loss: 0.6941 - acc: 0.4492
  3/400 [..............................] - ETA: 2465s - loss: 0.6940 - acc: 0.4557
  4/400 [..............................] - ETA: 2262s - loss: 0.6939 - acc: 0.4561
  5/400 [..............................] - ETA: 2136s - loss: 0.6939 - acc: 0.4552
  6/400 [..............................] - ETA: 2047s - loss: 0.6938 - acc: 0.4627
  7/400 [..............................] - ETA: 1984s - loss: 0.6938 - acc: 0.4687
  8/400 [..............................] - ETA: 1932s - loss: 0.6937 - acc: 0.4728
  9/400 [..............................] - ETA: 1891s - loss: 0.6936 - acc: 0.4796
 10/400 [..............................] - ETA: 1866s - loss: 0.6936 - acc: 0.4827
 11/400 [..............................] - ETA: 1842s - loss: 0.6935 - acc: 0.4878
 12/400 [..............................] - ETA: 1819s - loss: 0.6934 - acc: 0.4935
 13/400 [..............................] - ETA: 1802s - loss: 0.6933 - acc: 0.4980
 14/400 [>.............................] - ETA: 1785s - loss: 0.6932 - acc: 0.5041
 15/400 [>.............................] - ETA: 1770s - loss: 0.6931 - acc: 0.5088
 16/400 [>.............................] - ETA: 1755s - loss: 0.6931 - acc: 0.5149
 17/400 [>.............................] - ETA: 1742s - loss: 0.6930 - acc: 0.5188
 18/400 [>.............................] - ETA: 1732s - loss: 0.6929 - acc: 0.5242
 19/400 [>.............................] - ETA: 1719s - loss: 0.6929 - acc: 0.5288
 20/400 [>.............................] - ETA: 1710s - loss: 0.6928 - acc: 0.5337
 21/400 [>.............................] - ETA: 1701s - loss: 0.6927 - acc: 0.5397
 22/400 [>.............................] - ETA: 1688s - loss: 0.6926 - acc: 0.5461
 23/400 [>.............................] - ETA: 1678s - loss: 0.6925 - acc: 0.5517
 24/400 [>.............................] - ETA: 1669s - loss: 0.6924 - acc: 0.5575
 25/400 [>.............................] - ETA: 1660s - loss: 0.6923 - acc: 0.5634
 26/400 [>.............................] - ETA: 1653s - loss: 0.6922 - acc: 0.5693
 27/400 [=>............................] - ETA: 1646s - loss: 0.6921 - acc: 0.5746
 28/400 [=>............................] - ETA: 1638s - loss: 0.6920 - acc: 0.5790
 29/400 [=>............................] - ETA: 1631s - loss: 0.6919 - acc: 0.5850
 30/400 [=>............................] - ETA: 1623s - loss: 0.6918 - acc: 0.5903
 31/400 [=>............................] - ETA: 1615s - loss: 0.6917 - acc: 0.5958
 32/400 [=>............................] - ETA: 1609s - loss: 0.6916 - acc: 0.6015
 33/400 [=>............................] - ETA: 1603s - loss: 0.6915 - acc: 0.6067
 34/400 [=>............................] - ETA: 1598s - loss: 0.6914 - acc: 0.6125
 35/400 [=>............................] - ETA: 1593s - loss: 0.6912 - acc: 0.6177
 36/400 [=>............................] - ETA: 1587s - loss: 0.6911 - acc: 0.6230
 37/400 [=>............................] - ETA: 1581s - loss: 0.6910 - acc: 0.6276
 38/400 [=>............................] - ETA: 1580s - loss: 0.6909 - acc: 0.6315
 39/400 [=>............................] - ETA: 1575s - loss: 0.6908 - acc: 0.6358
 40/400 [==>...........................] - ETA: 1572s - loss: 0.6907 - acc: 0.6399

SGDAccum (accum_iters=1, batch=32)

 1/400 [..............................] - ETA: 3341s - loss: 0.6939 - acc: 0.4648
...
40/400 [==>...........................] - ETA: 1545s - loss: 0.6907 - acc: 0.6399

SGDAccum (accum_iters=2, batch=16)

Epoch 1/200
  1/400 [..............................] - ETA: 2258s - loss: 0.6937 - acc: 0.4661
  2/400 [..............................] - ETA: 1539s - loss: 0.6939 - acc: 0.4544
  3/400 [..............................] - ETA: 1304s - loss: 0.6940 - acc: 0.4523
  4/400 [..............................] - ETA: 1184s - loss: 0.6940 - acc: 0.4538
  5/400 [..............................] - ETA: 1110s - loss: 0.6940 - acc: 0.4505
  6/400 [..............................] - ETA: 1062s - loss: 0.6941 - acc: 0.4466
  7/400 [..............................] - ETA: 1020s - loss: 0.6941 - acc: 0.4509
  8/400 [..............................] - ETA: 993s - loss: 0.6940 - acc: 0.4544 
  9/400 [..............................] - ETA: 970s - loss: 0.6940 - acc: 0.4563
 10/400 [..............................] - ETA: 956s - loss: 0.6940 - acc: 0.4557
 11/400 [..............................] - ETA: 939s - loss: 0.6939 - acc: 0.4614
 12/400 [..............................] - ETA: 928s - loss: 0.6938 - acc: 0.4672
 13/400 [..............................] - ETA: 916s - loss: 0.6938 - acc: 0.4700
 14/400 [>.............................] - ETA: 907s - loss: 0.6938 - acc: 0.4708
 15/400 [>.............................] - ETA: 899s - loss: 0.6937 - acc: 0.4703
 16/400 [>.............................] - ETA: 892s - loss: 0.6937 - acc: 0.4740
 17/400 [>.............................] - ETA: 885s - loss: 0.6937 - acc: 0.4738
 18/400 [>.............................] - ETA: 877s - loss: 0.6936 - acc: 0.4766
 19/400 [>.............................] - ETA: 874s - loss: 0.6936 - acc: 0.4779
 20/400 [>.............................] - ETA: 868s - loss: 0.6936 - acc: 0.4794
 21/400 [>.............................] - ETA: 863s - loss: 0.6936 - acc: 0.4820
 22/400 [>.............................] - ETA: 856s - loss: 0.6935 - acc: 0.4843
 23/400 [>.............................] - ETA: 851s - loss: 0.6935 - acc: 0.4887
 24/400 [>.............................] - ETA: 847s - loss: 0.6934 - acc: 0.4909
 25/400 [>.............................] - ETA: 842s - loss: 0.6934 - acc: 0.4928
 26/400 [>.............................] - ETA: 838s - loss: 0.6934 - acc: 0.4964
 27/400 [=>............................] - ETA: 835s - loss: 0.6933 - acc: 0.4986
 28/400 [=>............................] - ETA: 830s - loss: 0.6933 - acc: 0.5019
 29/400 [=>............................] - ETA: 827s - loss: 0.6933 - acc: 0.5048
 30/400 [=>............................] - ETA: 823s - loss: 0.6932 - acc: 0.5073
 31/400 [=>............................] - ETA: 820s - loss: 0.6932 - acc: 0.5098
 32/400 [=>............................] - ETA: 817s - loss: 0.6931 - acc: 0.5131
 33/400 [=>............................] - ETA: 814s - loss: 0.6931 - acc: 0.5156
 34/400 [=>............................] - ETA: 811s - loss: 0.6930 - acc: 0.5193
 35/400 [=>............................] - ETA: 808s - loss: 0.6930 - acc: 0.5231
 36/400 [=>............................] - ETA: 806s - loss: 0.6929 - acc: 0.5263
 37/400 [=>............................] - ETA: 802s - loss: 0.6929 - acc: 0.5296
 38/400 [=>............................] - ETA: 798s - loss: 0.6928 - acc: 0.5330
 39/400 [=>............................] - ETA: 795s - loss: 0.6928 - acc: 0.5366
 40/400 [==>...........................] - ETA: 791s - loss: 0.6927 - acc: 0.5401
 41/400 [==>...........................] - ETA: 789s - loss: 0.6927 - acc: 0.5434
 42/400 [==>...........................] - ETA: 786s - loss: 0.6926 - acc: 0.5464
 43/400 [==>...........................] - ETA: 782s - loss: 0.6926 - acc: 0.5506
 44/400 [==>...........................] - ETA: 780s - loss: 0.6925 - acc: 0.5537
 45/400 [==>...........................] - ETA: 778s - loss: 0.6925 - acc: 0.5563
 46/400 [==>...........................] - ETA: 775s - loss: 0.6924 - acc: 0.5601
 47/400 [==>...........................] - ETA: 772s - loss: 0.6924 - acc: 0.5631
 48/400 [==>...........................] - ETA: 770s - loss: 0.6923 - acc: 0.5662
 49/400 [==>...........................] - ETA: 766s - loss: 0.6923 - acc: 0.5690
 50/400 [==>...........................] - ETA: 764s - loss: 0.6922 - acc: 0.5713
 51/400 [==>...........................] - ETA: 761s - loss: 0.6922 - acc: 0.5733
 52/400 [==>...........................] - ETA: 758s - loss: 0.6921 - acc: 0.5763
 53/400 [==>...........................] - ETA: 756s - loss: 0.6921 - acc: 0.5784
 54/400 [===>..........................] - ETA: 753s - loss: 0.6920 - acc: 0.5812
 55/400 [===>..........................] - ETA: 751s - loss: 0.6920 - acc: 0.5838
 56/400 [===>..........................] - ETA: 748s - loss: 0.6919 - acc: 0.5864
 57/400 [===>..........................] - ETA: 746s - loss: 0.6919 - acc: 0.5894
 58/400 [===>..........................] - ETA: 743s - loss: 0.6918 - acc: 0.5920
 59/400 [===>..........................] - ETA: 740s - loss: 0.6918 - acc: 0.5948
 60/400 [===>..........................] - ETA: 738s - loss: 0.6917 - acc: 0.5978
 61/400 [===>..........................] - ETA: 735s - loss: 0.6917 - acc: 0.6001
 62/400 [===>..........................] - ETA: 732s - loss: 0.6916 - acc: 0.6029
 63/400 [===>..........................] - ETA: 729s - loss: 0.6916 - acc: 0.6054
 64/400 [===>..........................] - ETA: 726s - loss: 0.6915 - acc: 0.6079
 65/400 [===>..........................] - ETA: 725s - loss: 0.6915 - acc: 0.6105
 66/400 [===>..........................] - ETA: 722s - loss: 0.6914 - acc: 0.6124
 67/400 [====>.........................] - ETA: 719s - loss: 0.6914 - acc: 0.6151
 68/400 [====>.........................] - ETA: 716s - loss: 0.6913 - acc: 0.6175
 69/400 [====>.........................] - ETA: 714s - loss: 0.6913 - acc: 0.6208
 70/400 [====>.........................] - ETA: 711s - loss: 0.6912 - acc: 0.6227
 71/400 [====>.........................] - ETA: 709s - loss: 0.6912 - acc: 0.6252
 72/400 [====>.........................] - ETA: 707s - loss: 0.6911 - acc: 0.6272
 73/400 [====>.........................] - ETA: 704s - loss: 0.6911 - acc: 0.6294
 74/400 [====>.........................] - ETA: 702s - loss: 0.6910 - acc: 0.6315
 75/400 [====>.........................] - ETA: 700s - loss: 0.6910 - acc: 0.6339
 76/400 [====>.........................] - ETA: 698s - loss: 0.6909 - acc: 0.6357
 77/400 [====>.........................] - ETA: 696s - loss: 0.6909 - acc: 0.6381
 78/400 [====>.........................] - ETA: 694s - loss: 0.6908 - acc: 0.6402
 79/400 [====>.........................] - ETA: 692s - loss: 0.6907 - acc: 0.6416
 80/400 [=====>........................] - ETA: 690s - loss: 0.6907 - acc: 0.6438

But there is problem with model.save() method: TypeError: ('Not JSON Serializable:', SGDAccum/variable)

viig99 commented 7 years ago

That will have to be included in the optimizers.py file, in the serialize and de-serialize methods. I would like to point out that batch accumulation is an incredibly useful option and should be provided with the main package, can we improve the visibility on this, or is their a better / preferred way to restructure the code ?

ZFTurbo commented 7 years ago

@viig99 may be you can try to add your changes directly in SGD optimizer in official repository as pull request. Because SGDAccum with default accum_iters=1 has the same behavior as standard SGD optimizer.

noagarcia commented 6 years ago

Hi @viig99, thanks for the SGDAccum code. I am getting the same error as @ZFTurbo when trying model.save(): TypeError: ('Not JSON Serializable:', SGDAccum/variable) I am using Keras 2.1.1. Can you show your optimizers.py code, please?

viig99 commented 6 years ago

https://www.hastebin.com/efabasizas.py this is the one i was using, i am pretty sure there are better ways of doing things, for now i am saving weights and restarting networks with those weights.

lolonger commented 6 years ago

@noagarcia @viig99 I think the reason unable to save is that 'accum_iters': self.accum_iters should be 'accum_iters': int(K.get_value(self.accum_iters))

However, even I could save the model, when I load the model, it still ended with error: unknown optimizer : SGDAccum

YoelShoshan commented 6 years ago

First of all, very happy that I found this thread - great stuff! Thanks all for sharing :)

Wondering - performance wise - isn't it better to use K.switch instead of self.updates.append(K.update(p, (1 - accum_switch) * p + accum_switch * new_p)) ?

For example, something of this spirit:

maybe_assign_params = K.switch(  
     self.iterations%self.accum_iters == 0,    
     K.update(p, new_p),   
     K.update_add(tiny_dummy_param,0) #or some other dummy no-op  
)  
self.updates.append(maybe_assign_params)

to avoid doing K.update of all parameters into themselves for every n-1/n of the steps.

ilansc commented 6 years ago

Can it be used along with batch normalization or do I need to change it a bit??

AdamIshay commented 6 years ago

Using one of these solutions, should the loss not improve until the weights are updated every K batches? I tried @gamers5a 's solution and my loss improves every batch, even when I choose a large value for accum_iters. I'm not sure about this.

Ajk4 commented 6 years ago

Thx guys! I'm using SGD provided by @viig99 and it works nicely!

Imho it should be part of keras itself though.

rex-yue-wu commented 6 years ago

I try to use the adam optimizers above, but none of them work for the new version v2.2.2.

nik-ko commented 6 years ago

I use this for 2.2.2:


from keras.legacy import interfaces
from keras.optimizers import Optimizer
from keras import backend as K

class AdamAccumulate(Optimizer):   
    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=20, **kwargs):
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, dtype='int64')

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]

        if self.amsgrad:
            vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        else:
            vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat, gg in zip(params, grads, ms, vs, vhats, gs):

            flag = K.equal(self.iterations % self.accum_iters, 0)
            flag = K.cast(flag, K.floatx())

            gg_t = (1 - flag) * (gg + g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * (gg + flag * g) / K.cast(self.accum_iters, K.floatx())
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square((gg + flag * g) / K.cast(self.accum_iters, K.floatx()))
            if self.amsgrad:
                vhat_t = K.maximum(vhat, v_t)
                p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
                self.updates.append(K.update(vhat, vhat_t))
            else:
                p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, flag * m_t + (1 - flag) * m))
            self.updates.append((v, flag * v_t + (1 - flag) * v))
            self.updates.append((gg, gg_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon,
                  'amsgrad': self.amsgrad}
        base_config = super(AdamAccumulate, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))`
phobrain commented 6 years ago

With nik-ko's version:

from keras_optim_acc import AdamAccumulate

on model.compile(optimizer='AdamAccumulate' ...) I get,

... python2.7/site-packages/keras/utils/generic_utils.py", line 138, in deserialize_keras_object
    ': ' + class_name)
ValueError: Unknown optimizer: AdamAccumulate
dmayhem93 commented 6 years ago

@phobrain optimizer=AdamAccumulate(), not optimizer='AdamAccumulate'

phobrain commented 6 years ago

I had a complaint about something being used twice when using AdamAccumulate with a shared/siamese component of my model. The general setup is here:

https://www.reddit.com/r/MachineLearning/comments/9p9xh4/d_lstm_for_sequence_of_images/

Will reproduce and paste the error when GPU is free. :-)

alexeydevederkin commented 6 years ago

@nik-ko If I set accum_iters to, say, 4 - it should update weights only after every 4 batches?

I use this callback and weights are updated after each batch for some reason:

class ModelWeightsCallback(Callback):
    def on_batch_end(self, batch, logs=None):
        print('\n\nweights:\n')
        print(self.model.get_weights())

Or maybe somebody else could check that code?

alexeydevederkin commented 6 years ago

Weights were updated after each batch, because in that code the flag was missed here:

if self.amsgrad:
    vhat_t = K.maximum(vhat, v_t)
    p_t = p - flag * lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
    self.updates.append(K.update(vhat, vhat_t))
else:
    p_t = p - flag * lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

Another thing that is not clear - why Adam and AdamAccumulate are getting different results.

For testing I use samples in the same order, don't use shuffle and copy initial wights, then run model.fit() two times with different optimizers. Adam runned twice reproduces its results almost exactly. But Adam(with batch=32) and AdamAccumulate(with batch=4, accum_iters=8) give different results.

Shouldn't they get almost the same results? So I'm not sure if the code of optimizer is correct...

rydevera3 commented 6 years ago

@alexeydevederkin - I also tried to use Adam with accumulated gradients presented here. When I try different experiments I have the same training accuracy but when the model goes through the validation portion the validation results are off. I am not sure if this is expected or not.

phobrain commented 6 years ago

In general I wouldn't expect optimizers to even give the same result from run to run, let alone agree, but it would be interesting to build up from a simple net and see if there is more divergence when more params are being initialized. On Friday, November 9, 2018, 3:29:37 AM PST, alexeydevederkin notifications@github.com wrote:

Weights were updated after each batch, because in that code the flag was missed here: if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - flag lr_t m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = p - flag lr_t m_t / (K.sqrt(v_t) + self.epsilon) Another thing that is not clear - why Adam and AdamAccumulate are getting different results.

For testing I use samples in the same order, don't use shuffle and copy initial wights, then run model.fit() two times with different optimizers. Adam runned twice reproduces its results almost exactly. But Adam(with batch=32) and AdamAccumulate(with batch=4, accum_iters=8) give different results.

Shouldn't they get almost the same results? So I'm not sure if the code of optimizer is correct...

— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub, or mute the thread.

rydevera3 commented 6 years ago

@phobrain - I agree with that statement but for a little more context in terms of accuracy for the particular project I'm working on the validation accuracy for regular Adam will be around 0.68 - 0.69 but with Adam accumulation I obtain 0.71 - 0.72. The discrepancy becomes higher the more accumulation rounds I add. I guess my original question is - is this type of discrepancy to high or expected when using accumulation.

phobrain commented 6 years ago

Thanks Ryan, is that validation accuracy on a held-out test set using predictions, or just when fitting? The latter I don't consider super meaningful. On Wednesday, November 14, 2018, 2:35:10 PM PST, Ryan de Vera notifications@github.com wrote:

@phobrain - I agree with that statement but for a little more context in terms of accuracy for the particular project I'm working on the validation accuracy for regular Adam will be around 0.68 - 0.69 but with Adam accumulation I obtain 0.71 - 0.72. The discrepancy becomes higher the more accumulation rounds I add. I guess my original question is - is this type of discrepancy to high or expected when using accumulation.

— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub, or mute the thread.

rydevera3 commented 6 years ago

@phobrain - this is the validation accuracy on a held-out test set using predictions.

adityaparikh1 commented 5 years ago

@phobrain optimizer=AdamAccumulate(), not optimizer='AdamAccumulate'

I'm getting the "ValueError: ('Could not interpret optimizer identifier:', <main.AdamAccumulate object at 0x00000000FD682E10>)"

Would you happen to know about this one?

vanche commented 5 years ago

same error with @adityaparikh1

vanche commented 5 years ago

@adityaparikh1 I found this error occur when it is checked instance of optimizer. If you use tensorflow.keras library, you should imfort "from tensorflow.keras.optimizers import Optimizer" not "from keras.optimizers import Optimizer". It works for me. But I also have problem that gradient update every epoch.

alexeydevederkin commented 5 years ago

@rydevera3 @phobrain I am using this code to test optimizer:

import keras.backend as K
import numpy as np
import tensorflow as tf
import random as rn

# Reproducibility
# https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development

np.random.seed(42)
rn.seed(12345)

session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
                              inter_op_parallelism_threads=1)

tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)

from keras import models, layers

model = models.Sequential()

model.add(layers.Conv2D(8, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

from keras.datasets import mnist
from keras.utils import to_categorical

(train_images, train_labels), _ = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
train_labels = to_categorical(train_labels)

model_2 = models.clone_model(model)
model_2.set_weights(model.get_weights())

model_3 = models.clone_model(model)
model_3.set_weights(model.get_weights())

optimizer = Adam(lr=0.0001)
model.compile(
    optimizer=optimizer,
    loss='categorical_crossentropy',
    metrics=['accuracy'])

print('\nTraining with Adam, 1st run:')
model.fit(train_images, train_labels, epochs=5, batch_size=32, shuffle=False)

optimizer_2 = Adam(lr=0.0001)
model_2.compile(
    optimizer=optimizer_2,
    loss='categorical_crossentropy',
    metrics=['accuracy'])

print('\nTraining with Adam, 2nd run:')
model_2.fit(train_images, train_labels, epochs=5, batch_size=32, shuffle=False)

optimizer_3 = AdamAccumulate(lr=0.0001, accum_iters=8)
model_3.compile(
    optimizer=optimizer_3,
    loss='categorical_crossentropy',
    metrics=['accuracy'])

print('\nTraining with AdamAccumulate:')
model_3.fit(train_images, train_labels, epochs=5, batch_size=4, shuffle=False)

Also run it with env variables: $ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python3 optimizer_test.py

What I got:

Training with Adam, 1st run:
Epoch 1/5
60000/60000 [==============================] - 79s 1ms/step - loss: 1.3168 - acc: 0.6004
Epoch 2/5
60000/60000 [==============================] - 76s 1ms/step - loss: 0.4745 - acc: 0.8595
Epoch 3/5
60000/60000 [==============================] - 79s 1ms/step - loss: 0.3572 - acc: 0.8944
Epoch 4/5
60000/60000 [==============================] - 77s 1ms/step - loss: 0.3018 - acc: 0.9104
Epoch 5/5
60000/60000 [==============================] - 76s 1ms/step - loss: 0.2672 - acc: 0.9201

Training with Adam, 2nd run:
Epoch 1/5
60000/60000 [==============================] - 75s 1ms/step - loss: 1.3168 - acc: 0.6004
Epoch 2/5
60000/60000 [==============================] - 75s 1ms/step - loss: 0.4745 - acc: 0.8595
Epoch 3/5
60000/60000 [==============================] - 78s 1ms/step - loss: 0.3572 - acc: 0.8944
Epoch 4/5
60000/60000 [==============================] - 79s 1ms/step - loss: 0.3018 - acc: 0.9104
Epoch 5/5
60000/60000 [==============================] - 77s 1ms/step - loss: 0.2672 - acc: 0.9201

Training with AdamAccumulate:
Epoch 1/5
60000/60000 [==============================] - 150s 3ms/step - loss: 0.9540 - acc: 0.7108   
Epoch 2/5
60000/60000 [==============================] - 161s 3ms/step - loss: 0.4133 - acc: 0.8761
Epoch 3/5
60000/60000 [==============================] - 164s 3ms/step - loss: 0.3300 - acc: 0.9022
Epoch 4/5
60000/60000 [==============================] - 140s 2ms/step - loss: 0.2857 - acc: 0.9147
Epoch 5/5
60000/60000 [==============================] - 155s 3ms/step - loss: 0.2563 - acc: 0.9232

As you can see Adam reproduces itsef exactly, but AdamAccumulate gives different results.

I noticed some mistakes in the code of optimizer, will post my version later, just need to fix some strange behavior. Hard to debug TF code)

Dutil commented 5 years ago

Hey everyone, I've corrected some bugs in @nik-ko 's implementation (mainly the learning rate which wasn't adjusting correctly). Here it is:

from keras.legacy import interfaces
from keras.optimizers import Optimizer, Adam
from keras import backend as K

class AdamAccumulate(Optimizer):   
    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=20, **kwargs):
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.effective_iterations = K.variable(0, dtype='int64', name='effective_iterations')

            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, dtype='int64')

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)

        self.updates = [K.update(self.iterations, self.iterations + 1)]

        flag = K.equal(self.iterations % self.accum_iters, self.accum_iters - 1)
        flag = K.cast(flag, K.floatx())

        self.updates.append(K.update(self.effective_iterations, 
                                 self.effective_iterations + K.cast(flag, 'int64')))

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.effective_iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.effective_iterations, K.floatx()) + 1

        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t )))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]

        if self.amsgrad:
            vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        else:
            vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat, gg in zip(params, grads, ms, vs, vhats, gs):

            gg_t = (1 - flag) * (gg + g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * (gg + flag * g) / K.cast(self.accum_iters, K.floatx())
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square((gg + flag * g) / K.cast(self.accum_iters, K.floatx()))

            if self.amsgrad:
                vhat_t = K.maximum(vhat, v_t)
                p_t = p - flag * lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
                self.updates.append(K.update(vhat, vhat_t))
            else:
                p_t = p - flag * lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, flag * m_t + (1 - flag) * m))
            self.updates.append((v, flag * v_t + (1 - flag) * v))
            self.updates.append((gg, gg_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon,
                  'amsgrad': self.amsgrad}
        base_config = super(AdamAccumulate, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

And using @alexeydevederkin 's test, everything seems to work almost perfectly:

Training with Adam, 1st run:
Epoch 1/1
60000/60000 [==============================] - 24s 402us/step - loss: 1.3166 - acc: 0.6004

Training with Adam, 2nd run:
Epoch 1/1
60000/60000 [==============================] - 24s 408us/step - loss: 1.3166 - acc: 0.6004

Training with AdamAccumulate:
Epoch 1/1
60000/60000 [==============================] - 148s 2ms/step - loss: 1.3139 - acc: 0.6004
phobrain commented 5 years ago

With @Dutil 's code, I don't see my earlier-mentioned "complaint about something being used twice," tho other model details are different by now so that could be the cause, and I get reasonable results with my siamese model using keyword vectors, doubling the batch of 1024. In the same siamese model using VGG16, doubling batch of 32, on 1st try my held-back positive test cases all had the same value (0.01187402) which is binary-correct but too fishy. Rerunning, got two creditable epochs with hold-out testing between. But I see about the same run profile as for adagrad, so wondering if it makes sense (blindly QA'ing for now).

adagrad 11/4 15080/15080 3414s 226ms/step

AdamAcc 11/21 15394/15394 3190s 207ms/step

model.compile(optimizer=AdamAccumulate(accum_iters=2),
        loss='binary_crossentropy',
        metrics=['binary_accuracy']
        #options=run_opts
)

Will try @alexeydevederkin 's version next.

alexeydevederkin commented 5 years ago

My version of Adam optimizer with accumulated gradient (slightly different from @Dutil 's - closer results to Adam)

import keras.backend as K
from keras.legacy import interfaces
from keras.optimizers import Optimizer

class AdamAccumulate(Optimizer):

    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
        if accum_iters < 1:
            raise ValueError('accum_iters must be >= 1')
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
        self.accum_iters_float = K.cast(self.accum_iters, K.floatx())

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr

        completed_updates = K.cast(K.tf.floordiv(self.iterations, self.accum_iters), K.floatx())

        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * completed_updates))

        t = completed_updates + 1

        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

        # self.iterations incremented after processing a batch
        # batch:              1 2 3 4 5 6 7 8 9
        # self.iterations:    0 1 2 3 4 5 6 7 8
        # update_switch = 1:        x       x    (if accum_iters=4)  
        update_switch = K.equal((self.iterations + 1) % self.accum_iters, 0)
        update_switch = K.cast(update_switch, K.floatx())

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]

        if self.amsgrad:
            vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        else:
            vhats = [K.zeros(1) for _ in params]

        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat, tg in zip(params, grads, ms, vs, vhats, gs):

            sum_grad = tg + g
            avg_grad = sum_grad / self.accum_iters_float

            m_t = (self.beta_1 * m) + (1. - self.beta_1) * avg_grad
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(avg_grad)

            if self.amsgrad:
                vhat_t = K.maximum(vhat, v_t)
                p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
                self.updates.append(K.update(vhat, (1 - update_switch) * vhat + update_switch * vhat_t))
            else:
                p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, (1 - update_switch) * m + update_switch * m_t))
            self.updates.append(K.update(v, (1 - update_switch) * v + update_switch * v_t))
            self.updates.append(K.update(tg, (1 - update_switch) * sum_grad))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, (1 - update_switch) * p + update_switch * new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon,
                  'amsgrad': self.amsgrad}
        base_config = super(AdamAccumulate, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

Tests:

Training with Adam, 1st run:
Epoch 1/5
60000/60000 [==============================] - 68s 1ms/step - loss: 1.3168 - acc: 0.6004
Epoch 2/5
60000/60000 [==============================] - 70s 1ms/step - loss: 0.4745 - acc: 0.8595
Epoch 3/5
60000/60000 [==============================] - 69s 1ms/step - loss: 0.3572 - acc: 0.8944
Epoch 4/5
60000/60000 [==============================] - 71s 1ms/step - loss: 0.3018 - acc: 0.9104
Epoch 5/5
60000/60000 [==============================] - 71s 1ms/step - loss: 0.2672 - acc: 0.9201

Training with Adam, 2nd run:
Epoch 1/5
60000/60000 [==============================] - 71s 1ms/step - loss: 1.3168 - acc: 0.6004
Epoch 2/5
60000/60000 [==============================] - 71s 1ms/step - loss: 0.4745 - acc: 0.8595
Epoch 3/5
60000/60000 [==============================] - 67s 1ms/step - loss: 0.3572 - acc: 0.8944
Epoch 4/5
60000/60000 [==============================] - 71s 1ms/step - loss: 0.3018 - acc: 0.9104
Epoch 5/5
60000/60000 [==============================] - 67s 1ms/step - loss: 0.2672 - acc: 0.9201

Training with AdamAccumulate:
Epoch 1/5
60000/60000 [==============================] - 141s 2ms/step - loss: 1.3167 - acc: 0.6004   
Epoch 2/5
60000/60000 [==============================] - 141s 2ms/step - loss: 0.4744 - acc: 0.8596
Epoch 3/5
60000/60000 [==============================] - 136s 2ms/step - loss: 0.3572 - acc: 0.8944
Epoch 4/5
60000/60000 [==============================] - 139s 2ms/step - loss: 0.3018 - acc: 0.9105
Epoch 5/5
60000/60000 [==============================] - 138s 2ms/step - loss: 0.2671 - acc: 0.9201

I'm not very familiar with Tensorflow, but maybe it could be further improved (for speed) by using conditional updates instead of updating variables with the same values.

phobrain commented 5 years ago

With @alexeydevederkin 's version on the VGG case, python 2.7:

  File "../keras_optim_acc2.py", line 34, in get_updates
    completed_updates = K.cast(K.tf.floor(self.iterations / self.accum_iters), K.floatx())
  File "/home/phobrain/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 2931, in floor
    "Floor", x=x, name=name)
  File "/home/phobrain/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 609, in _apply_op_helper
    param_name=input_name)
  File "/home/phobrain/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 60, in _SatisfiesTypeConstraint
    ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
TypeError: Value passed to parameter 'x' has DataType int64 not in list of allowed values: bfloat16, float16, float32, float64