Epoch: 1/1500 - LR: 0.000300
0%| | 0/11044 [00:04<?, ?it/s]
Traceback (most recent call last):
File "main.py", line 49, in
main(config)
File "main.py", line 41, in main
trainer.train()
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\trainer.py", line 164, in train
train_loss, train_acc = self.train_one_epoch(epoch)
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\trainer.py", line 241, in train_one_epoch
h_t, l_t, b_t, p = self.model(x, l_t, h_t)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, kwargs)
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\model.py", line 80, in forward
h_t = self.rnn(g_t, h_t_prev)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\modules.py", line 226, in forward
h1 = self.i2h(g_t)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\linear.py", line 93, in forward
return F.linear(input, self.weight, self.bias)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\functional.py", line 1690, in linear
ret = torch.addmm(bias, input, weight.t())
RuntimeError: mat1 and mat2 shapes cannot be multiplied (128x512 and 256x256)
Epoch: 1/1500 - LR: 0.000300 0%| | 0/11044 [00:04<?, ?it/s] Traceback (most recent call last): File "main.py", line 49, in
main(config)
File "main.py", line 41, in main
trainer.train()
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\trainer.py", line 164, in train
train_loss, train_acc = self.train_one_epoch(epoch)
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\trainer.py", line 241, in train_one_epoch
h_t, l_t, b_t, p = self.model(x, l_t, h_t)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, kwargs)
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\model.py", line 80, in forward
h_t = self.rnn(g_t, h_t_prev)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "C:\Users\apatil\pyram - exp 2\pytorch_ram\modules.py", line 226, in forward
h1 = self.i2h(g_t)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\modules\linear.py", line 93, in forward
return F.linear(input, self.weight, self.bias)
File "C:\tools\Anaconda3\envs\pytorch_ram\lib\site-packages\torch\nn\functional.py", line 1690, in linear
ret = torch.addmm(bias, input, weight.t())
RuntimeError: mat1 and mat2 shapes cannot be multiplied (128x512 and 256x256)
(pytorch_ram) C:\Users\apatil\pyram - exp 2\pytorch_ram>