Open fatalfeel opened 3 years ago
python3 main.py --use_gpu False --is_train True
#kwargs = {} if config.use_gpu: torch.cuda.manual_seed(config.random_seed) kwargs = {"num_workers": 1, "pin_memory": True} else: kwargs = {} # instantiate data loaders '''if config.is_train: dloader = data_loader.get_train_valid_loader(config.data_dir, config.batch_size, config.random_seed, config.valid_size, config.shuffle, config.show_sample, **kwargs) else: dloader = data_loader.get_test_loader(config.data_dir, config.batch_size, **kwargs)''' if config.is_train: dloader = data_loader.get_train_valid_loader(config.data_dir, config.batch_size, config.random_seed, config.valid_size, config.shuffle, config.show_sample, kwargs) else: dloader = data_loader.get_test_loader(config.data_dir, config.batch_size, kwargs) ~~~~~~~~~~~~~~~~~~~~~data_loader.py~~~~~~~~~~~~~~~ '''def get_train_valid_loader( data_dir, batch_size, random_seed, valid_size=0.1, shuffle=True, show_sample=False, num_workers=4, pin_memory=False, ):''' def get_train_valid_loader(data_dir, batch_size, random_seed, valid_size, shuffle, show_sample, kwargs): '''train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers, pin_memory=pin_memory) valid_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers, pin_memory=pin_memory)''' train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler, **kwargs) valid_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler, **kwargs) # visualize some images if show_sample: '''sample_loader = torch.utils.data.DataLoader(dataset, batch_size=9, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)''' sample_loader = torch.utils.data.DataLoader(dataset, batch_size=9, shuffle=shuffle, **kwargs) data_iter = iter(sample_loader) images, labels = data_iter.next() X = images.numpy() X = np.transpose(X, [0, 2, 3, 1]) plot_images(X, labels) return (train_loader, valid_loader) '''def get_test_loader(data_dir, batch_size, num_workers=4, pin_memory=False):''' def get_test_loader(data_dir, batch_size, kwargs): """Test datalaoder. If using CUDA, num_workers should be set to 1 and pin_memory to True. Args: data_dir: path directory to the dataset. batch_size: how many samples per batch to load. num_workers: number of subprocesses to use when loading the dataset. pin_memory: whether to copy tensors into CUDA pinned memory. Set it to True if using GPU. """ # define transforms normalize = transforms.Normalize((0.1307,), (0.3081,)) trans = transforms.Compose([transforms.ToTensor(), normalize]) # load dataset dataset = datasets.MNIST(data_dir, train=False, download=True, transform=trans) '''data_loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=pin_memory, )''' data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, **kwargs) return data_loader
python3 main.py --use_gpu False --is_train True