kinredon / umt

A Pytorch Implementation of Unbiased Mean Teacher for Cross-domain Object Detection (CVPR 2021)
MIT License
88 stars 7 forks source link

About the accuracy on cityScapes to foggyCityScapes #17

Open lch1999 opened 1 year ago

lch1999 commented 1 year ago

I train and test the model on cityScapes to foggyCityScapes,but my mAP is 35.1, which is lower than 41.7 reported in the paper. I guess maybe there are some mistakes in my configs.

Here are my configs: Called with args: Namespace(aug=True, batch_size=1, binary=False, budget=0.3, checkepoch=1, checkpoint=0, checkpoint_interval=10000, checksession=1, class_agnostic=False, conf=True, conf_gamma=0.1, cuda=True, dataset='cityscape', dataset_t='foggy_cityscape', dc=None, detach=True, disp_interval=100, ef=False, eta=0.1, gamma=5, gc=False, image_dir='images', lam=0.01, lam2=0.1, large_scale=False, lc=False, load_name='models', load_name_conf=None, lr=0.001, lr_decay_gamma=0.1, lr_decay_step=5, mGPUs=False, max_epochs=8, net='vgg16', num_workers=0, optimizer='sgd', pl=True, pretrained_epoch=0, resume=False, save_dir='models', session=1, source_like=True, source_model=None, start_epoch=1, student_load_name='models', target_like=True, teacher_alpha=0.99, teacher_load_name='models', test_results_dir='test_results', threshold=0.8, use_tfboard=False, vis=False) Using config: {'ANCHOR_RATIOS': [0.5, 1, 2], 'ANCHOR_SCALES': [8, 16, 32], 'CROP_RESIZE_WITH_MAX_POOL': False, 'CUDA': False, 'DATA_DIR': '/home/lch1999/myModel/data', 'DEDUP_BOXES': 0.0625, 'EPS': 1e-14, 'EXP_DIR': 'vgg16', 'FEAT_STRIDE': [16], 'GPU_ID': 0, 'MATLAB': 'matlab', 'MAX_NUM_GT_BOXES': 30, 'MOBILENET': {'DEPTH_MULTIPLIER': 1.0, 'FIXED_LAYERS': 5, 'REGU_DEPTH': False, 'WEIGHT_DECAY': 4e-05}, 'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]), 'POOLING_MODE': 'align', 'POOLING_SIZE': 7, 'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False}, 'RESNET101_PATH': 'data/pretrained_model/resnet101_caffe.pth', 'RESNET50_PATH': 'data/pretrained_model/resnet50_caffe.pth', 'RNG_SEED': 3, 'ROOT_DIR': '/home/lch1999/myModel', 'TEST': {'BBOX_REG': True, 'HAS_RPN': True, 'MAX_SIZE': 1200, 'MODE': 'nms', 'NMS': 0.3, 'PROPOSAL_METHOD': 'gt', 'RPN_MIN_SIZE': 16, 'RPN_NMS_THRESH': 0.7, 'RPN_POST_NMS_TOP_N': 300, 'RPN_PRE_NMS_TOP_N': 6000, 'RPN_TOP_N': 5000, 'SCALES': [600], 'SVM': False}, 'TRAIN': {'ASPECT_GROUPING': False, 'BATCH_SIZE': 256, 'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0], 'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0], 'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2], 'BBOX_NORMALIZE_TARGETS': True, 'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True, 'BBOX_REG': True, 'BBOX_THRESH': 0.5, 'BG_THRESH_HI': 0.5, 'BG_THRESH_LO': 0.0, 'BIAS_DECAY': False, 'BN_TRAIN': False, 'DISPLAY': 10, 'DOUBLE_BIAS': True, 'FG_FRACTION': 0.25, 'FG_THRESH': 0.5, 'GAMMA': 0.1, 'HAS_RPN': True, 'IMS_PER_BATCH': 1, 'LEARNING_RATE': 0.001, 'MAX_SIZE': 1200, 'MOMENTUM': 0.9, 'PROPOSAL_METHOD': 'gt', 'RPN_BATCHSIZE': 256, 'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0], 'RPN_CLOBBER_POSITIVES': False, 'RPN_FG_FRACTION': 0.5, 'RPN_MIN_SIZE': 8, 'RPN_NEGATIVE_OVERLAP': 0.3, 'RPN_NMS_THRESH': 0.7, 'RPN_POSITIVE_OVERLAP': 0.7, 'RPN_POSITIVE_WEIGHT': -1.0, 'RPN_POST_NMS_TOP_N': 2000, 'RPN_POST_NMS_TOP_N_TARGET': 256, 'RPN_PRE_NMS_TOP_N': 12000, 'SCALES': [600], 'SNAPSHOT_ITERS': 5000, 'SNAPSHOT_KEPT': 3, 'SNAPSHOT_PREFIX': 'res101_faster_rcnn', 'STEPSIZE': [30000], 'SUMMARY_INTERVAL': 180, 'TRIM_HEIGHT': 600, 'TRIM_WIDTH': 600, 'TRUNCATED': False, 'USE_ALL_GT': True, 'USE_FLIPPED': True, 'USE_GT': False, 'WEIGHT_DECAY': 0.0005}, 'USE_GPU_NMS': True, 'VGG_PATH': '/home/lch1999/pretrainvggforUMT/vgg16_caffe.pth'}

And here are my results: AP for bus = 0.3952 AP for bicycle = 0.3204 AP for car = 0.5049 AP for motorcycle = 0.2490 AP for person = 0.3292 AP for rider = 0.4064 AP for train = 0.3154 AP for truck = 0.2855 Mean AP = 0.3508

Could you please check my config and give some suggestions?Thank you very much!