Closed OliviaOliveiira closed 4 months ago
Do you use Intel ARC GPU? I think Intel ARC only works with Linux or WSL.
Do you use Intel ARC GPU? I think Intel ARC only works with Linux or WSL.
Nope, RTX 3090, that's why its weird it tries to call it
Very weird... I think it means the following line is called and HAS_XPU is set to True.
Is library/__init__.py
empty? I wonder the file may be accidentally overwritten.
https://github.com/kohya-ss/sd-scripts/blob/sd3/library/__init__.py
here's my library/init.py
import os
import sys
import contextlib
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from .hijacks import ipex_hijacks
# pylint: disable=protected-access, missing-function-docstring, line-too-long
def ipex_init(): # pylint: disable=too-many-statements
try:
if hasattr(torch, "cuda") and hasattr(torch.cuda, "is_xpu_hijacked") and torch.cuda.is_xpu_hijacked:
return True, "Skipping IPEX hijack"
else:
# Replace cuda with xpu:
torch.cuda.current_device = torch.xpu.current_device
torch.cuda.current_stream = torch.xpu.current_stream
torch.cuda.device = torch.xpu.device
torch.cuda.device_count = torch.xpu.device_count
torch.cuda.device_of = torch.xpu.device_of
torch.cuda.get_device_name = torch.xpu.get_device_name
torch.cuda.get_device_properties = torch.xpu.get_device_properties
torch.cuda.init = torch.xpu.init
torch.cuda.is_available = torch.xpu.is_available
torch.cuda.is_initialized = torch.xpu.is_initialized
torch.cuda.is_current_stream_capturing = lambda: False
torch.cuda.set_device = torch.xpu.set_device
torch.cuda.stream = torch.xpu.stream
torch.cuda.synchronize = torch.xpu.synchronize
torch.cuda.Event = torch.xpu.Event
torch.cuda.Stream = torch.xpu.Stream
torch.cuda.FloatTensor = torch.xpu.FloatTensor
torch.Tensor.cuda = torch.Tensor.xpu
torch.Tensor.is_cuda = torch.Tensor.is_xpu
torch.nn.Module.cuda = torch.nn.Module.xpu
torch.UntypedStorage.cuda = torch.UntypedStorage.xpu
torch.cuda._initialization_lock = torch.xpu.lazy_init._initialization_lock
torch.cuda._initialized = torch.xpu.lazy_init._initialized
torch.cuda._lazy_seed_tracker = torch.xpu.lazy_init._lazy_seed_tracker
torch.cuda._queued_calls = torch.xpu.lazy_init._queued_calls
torch.cuda._tls = torch.xpu.lazy_init._tls
torch.cuda.threading = torch.xpu.lazy_init.threading
torch.cuda.traceback = torch.xpu.lazy_init.traceback
torch.cuda.Optional = torch.xpu.Optional
torch.cuda.__cached__ = torch.xpu.__cached__
torch.cuda.__loader__ = torch.xpu.__loader__
torch.cuda.ComplexFloatStorage = torch.xpu.ComplexFloatStorage
torch.cuda.Tuple = torch.xpu.Tuple
torch.cuda.streams = torch.xpu.streams
torch.cuda._lazy_new = torch.xpu._lazy_new
torch.cuda.FloatStorage = torch.xpu.FloatStorage
torch.cuda.Any = torch.xpu.Any
torch.cuda.__doc__ = torch.xpu.__doc__
torch.cuda.default_generators = torch.xpu.default_generators
torch.cuda.HalfTensor = torch.xpu.HalfTensor
torch.cuda._get_device_index = torch.xpu._get_device_index
torch.cuda.__path__ = torch.xpu.__path__
torch.cuda.Device = torch.xpu.Device
torch.cuda.IntTensor = torch.xpu.IntTensor
torch.cuda.ByteStorage = torch.xpu.ByteStorage
torch.cuda.set_stream = torch.xpu.set_stream
torch.cuda.BoolStorage = torch.xpu.BoolStorage
torch.cuda.os = torch.xpu.os
torch.cuda.torch = torch.xpu.torch
torch.cuda.BFloat16Storage = torch.xpu.BFloat16Storage
torch.cuda.Union = torch.xpu.Union
torch.cuda.DoubleTensor = torch.xpu.DoubleTensor
torch.cuda.ShortTensor = torch.xpu.ShortTensor
torch.cuda.LongTensor = torch.xpu.LongTensor
torch.cuda.IntStorage = torch.xpu.IntStorage
torch.cuda.LongStorage = torch.xpu.LongStorage
torch.cuda.__annotations__ = torch.xpu.__annotations__
torch.cuda.__package__ = torch.xpu.__package__
torch.cuda.__builtins__ = torch.xpu.__builtins__
torch.cuda.CharTensor = torch.xpu.CharTensor
torch.cuda.List = torch.xpu.List
torch.cuda._lazy_init = torch.xpu._lazy_init
torch.cuda.BFloat16Tensor = torch.xpu.BFloat16Tensor
torch.cuda.DoubleStorage = torch.xpu.DoubleStorage
torch.cuda.ByteTensor = torch.xpu.ByteTensor
torch.cuda.StreamContext = torch.xpu.StreamContext
torch.cuda.ComplexDoubleStorage = torch.xpu.ComplexDoubleStorage
torch.cuda.ShortStorage = torch.xpu.ShortStorage
torch.cuda._lazy_call = torch.xpu._lazy_call
torch.cuda.HalfStorage = torch.xpu.HalfStorage
torch.cuda.random = torch.xpu.random
torch.cuda._device = torch.xpu._device
torch.cuda.classproperty = torch.xpu.classproperty
torch.cuda.__name__ = torch.xpu.__name__
torch.cuda._device_t = torch.xpu._device_t
torch.cuda.warnings = torch.xpu.warnings
torch.cuda.__spec__ = torch.xpu.__spec__
torch.cuda.BoolTensor = torch.xpu.BoolTensor
torch.cuda.CharStorage = torch.xpu.CharStorage
torch.cuda.__file__ = torch.xpu.__file__
torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
# torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing
# Memory:
torch.cuda.memory = torch.xpu.memory
if 'linux' in sys.platform and "WSL2" in os.popen("uname -a").read():
torch.xpu.empty_cache = lambda: None
torch.cuda.empty_cache = torch.xpu.empty_cache
torch.cuda.memory_stats = torch.xpu.memory_stats
torch.cuda.memory_summary = torch.xpu.memory_summary
torch.cuda.memory_snapshot = torch.xpu.memory_snapshot
torch.cuda.memory_allocated = torch.xpu.memory_allocated
torch.cuda.max_memory_allocated = torch.xpu.max_memory_allocated
torch.cuda.memory_reserved = torch.xpu.memory_reserved
torch.cuda.memory_cached = torch.xpu.memory_reserved
torch.cuda.max_memory_reserved = torch.xpu.max_memory_reserved
torch.cuda.max_memory_cached = torch.xpu.max_memory_reserved
torch.cuda.reset_peak_memory_stats = torch.xpu.reset_peak_memory_stats
torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
torch.cuda.reset_accumulated_memory_stats = torch.xpu.reset_accumulated_memory_stats
# RNG:
torch.cuda.get_rng_state = torch.xpu.get_rng_state
torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
torch.cuda.set_rng_state = torch.xpu.set_rng_state
torch.cuda.set_rng_state_all = torch.xpu.set_rng_state_all
torch.cuda.manual_seed = torch.xpu.manual_seed
torch.cuda.manual_seed_all = torch.xpu.manual_seed_all
torch.cuda.seed = torch.xpu.seed
torch.cuda.seed_all = torch.xpu.seed_all
torch.cuda.initial_seed = torch.xpu.initial_seed
# AMP:
torch.cuda.amp = torch.xpu.amp
torch.is_autocast_enabled = torch.xpu.is_autocast_xpu_enabled
torch.get_autocast_gpu_dtype = torch.xpu.get_autocast_xpu_dtype
if not hasattr(torch.cuda.amp, "common"):
torch.cuda.amp.common = contextlib.nullcontext()
torch.cuda.amp.common.amp_definitely_not_available = lambda: False
try:
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught
try:
from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error
gradscaler_init()
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
# C
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
ipex._C._DeviceProperties.multi_processor_count = ipex._C._DeviceProperties.gpu_subslice_count
ipex._C._DeviceProperties.major = 2024
ipex._C._DeviceProperties.minor = 0
# Fix functions with ipex:
torch.cuda.mem_get_info = lambda device=None: [(torch.xpu.get_device_properties(device).total_memory - torch.xpu.memory_reserved(device)), torch.xpu.get_device_properties(device).total_memory]
torch._utils._get_available_device_type = lambda: "xpu"
torch.has_cuda = True
torch.cuda.has_half = True
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
torch.backends.cuda.is_built = lambda *args, **kwargs: True
torch.version.cuda = "12.1"
torch.cuda.get_device_capability = lambda *args, **kwargs: [12,1]
torch.cuda.get_device_properties.major = 12
torch.cuda.get_device_properties.minor = 1
torch.cuda.ipc_collect = lambda *args, **kwargs: None
torch.cuda.utilization = lambda *args, **kwargs: 0
ipex_hijacks()
if not torch.xpu.has_fp64_dtype() or os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is not None:
try:
from .diffusers import ipex_diffusers
ipex_diffusers()
except Exception: # pylint: disable=broad-exception-caught
pass
torch.cuda.is_xpu_hijacked = True
except Exception as e:
return False, e
return True, None
Yeah, looks like everything went wrong for some reason, even though I've never launched solely via cpu or an intel GPU.. How do I fix this? Simply deleting the folder and git pulling it again should do the job, right?)
though I don't see HAS_XPU as true
import functools
import gc
import torch
try:
HAS_CUDA = torch.cuda.is_available()
except Exception:
HAS_CUDA = False
try:
HAS_MPS = torch.backends.mps.is_available()
except Exception:
HAS_MPS = False
try:
import intel_extension_for_pytorch as ipex # noqa
HAS_XPU = torch.xpu.is_available()
except Exception:
HAS_XPU = False
def clean_memory():
gc.collect()
if HAS_CUDA:
torch.cuda.empty_cache()
if HAS_XPU:
torch.xpu.empty_cache()
if HAS_MPS:
torch.mps.empty_cache()
def clean_memory_on_device(device: torch.device):
r"""
Clean memory on the specified device, will be called from training scripts.
"""
gc.collect()
# device may "cuda" or "cuda:0", so we need to check the type of device
if device.type == "cuda":
torch.cuda.empty_cache()
if device.type == "xpu":
torch.xpu.empty_cache()
if device.type == "mps":
torch.mps.empty_cache()
@functools.lru_cache(maxsize=None)
def get_preferred_device() -> torch.device:
r"""
Do not call this function from training scripts. Use accelerator.device instead.
"""
if HAS_CUDA:
device = torch.device("cuda")
elif HAS_XPU:
device = torch.device("xpu")
elif HAS_MPS:
device = torch.device("mps")
else:
device = torch.device("cpu")
print(f"get_preferred_device() -> {device}")
return device
def init_ipex():
"""
Apply IPEX to CUDA hijacks using `library.ipex.ipex_init`.
This function should run right after importing torch and before doing anything else.
If IPEX is not available, this function does nothing.
"""
try:
if HAS_XPU:
from library.ipex import ipex_init
is_initialized, error_message = ipex_init()
if not is_initialized:
print("failed to initialize ipex:", error_message)
else:
return
except Exception as e:
print("failed to initialize ipex:", e)
library/__init__.py
is seemed to be overwritten.
Simply deleting the folder and git pulling it again should do the job, right?)
This may solve the issue :)
library/__init__.py
is seemed to be overwritten.Simply deleting the folder and git pulling it again should do the job, right?)
This may solve the issue :)
Already tried to empty it and run the training and even though it's empty during and after training, it still tries to call that xpu. UPDATE: Git cloned it from the start to ensure everything's clean, and still get this very error.. Is my venv broken, or how is this even possible?)
well, yeah, looks like my venv was broken, the training has started now. thanks!
Whenever I start training, I get the described error. I tried to look up the intel-pytorch-extension whl for windows, and none of them seem to do the job, I get more and more errors related to it. Is it only on Linux, or there is another way to solve the issue?