kriswiner / MPU9250

Arduino sketches for MPU9250 9DoF with AHRS sensor fusion
1.04k stars 471 forks source link

MPU9250 Arduino Pro Mini calibration #323

Closed gojunnyo closed 5 years ago

gojunnyo commented 6 years ago

Hi Kris! I am honestly tired due to 5 days and night of straight browsing, reading and basically doing anything to calibrate my MPU9250, I have read the 0x73 "issue" and that my sensor is MPU9255, I am new to these sensors and knew basics in Arduino. I had read somewhere that MPU6050 code "theoretically" is the same with MPU9250 but without the magnetometer, so what I did is I used MPU6050 calibration sketches. Although it says MPU6050 connection failed, the sketch managed to spit out data which confuses me (it failed so it shouldn't continue but why did it? or it says it failed because I used MPU9250). The problem is, it takes literally forever to calibrate as if it doesn't want to calibrate at all. I tried modifying your MPU9250_AHRS sketch and got it working but I have no idea what to do with the data. From what I observed on the serial plotter, the graph seems back and forth; more like a triangle wave. And still, I have no idea what was happening, although I observed changes if I move the sensors (obviously). Any help is much appreciated!

MPU6050 CALIBRATION SOURCE: http://wired.chillibasket.com/2015/01/calibrating-mpu6050/

``

include "I2Cdev.h"

include "MPU6050.h"

include "Wire.h"

/////////////////////////////////// CONFIGURATION ///////////////////////////// //Change this 3 variables if you want to fine tune the skecth to your needs. int buffersize=1000; //Amount of readings used to average, make it higher to get more precision but sketch will be slower (default:1000) int acel_deadzone=8; //Acelerometer error allowed, make it lower to get more precision, but sketch may not converge (default:8) int giro_deadzone=1; //Giro error allowed, make it lower to get more precision, but sketch may not converge (default:1)

// default I2C address is 0x68 // specific I2C addresses may be passed as a parameter here // AD0 low = 0x68 (default for InvenSense evaluation board) // AD0 high = 0x69 //MPU6050 accelgyro; MPU6050 accelgyro(0x68); // <-- use for AD0 high

int16_t ax, ay, az,gx, gy, gz;

int mean_ax,mean_ay,mean_az,mean_gx,mean_gy,mean_gz,state=0; int ax_offset,ay_offset,az_offset,gx_offset,gy_offset,gz_offset;

/////////////////////////////////// SETUP //////////////////////////////////// void setup() { // join I2C bus (I2Cdev library doesn't do this automatically) Wire.begin(); // COMMENT NEXT LINE IF YOU ARE USING ARDUINO DUE TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz). Leonardo measured 250kHz.

// initialize serial communication Serial.begin(115200);

// initialize device accelgyro.initialize();

// wait for ready while (Serial.available() && Serial.read()); // empty buffer while (!Serial.available()){ Serial.println(F("Send any character to start sketch.\n")); delay(1500); }
while (Serial.available() && Serial.read()); // empty buffer again

// start message Serial.println("\nMPU6050 Calibration Sketch"); delay(2000); Serial.println("\nYour MPU6050 should be placed in horizontal position, with package letters facing up. \nDon't touch it until you see a finish message.\n"); delay(3000); // verify connection Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed"); delay(1000); // reset offsets accelgyro.setXAccelOffset(0); accelgyro.setYAccelOffset(0); accelgyro.setZAccelOffset(0); accelgyro.setXGyroOffset(0); accelgyro.setYGyroOffset(0); accelgyro.setZGyroOffset(0); }

/////////////////////////////////// LOOP //////////////////////////////////// void loop() { if (state==0){ Serial.println("\nReading sensors for first time..."); meansensors(); state++; delay(1000); }

if (state==1) { Serial.println("\nCalculating offsets..."); calibration(); state++; delay(1000); }

if (state==2) { meansensors(); Serial.println("\nFINISHED!"); Serial.print("\nSensor readings with offsets:\t"); Serial.print(mean_ax); Serial.print("\t"); Serial.print(mean_ay); Serial.print("\t"); Serial.print(mean_az); Serial.print("\t"); Serial.print(mean_gx); Serial.print("\t"); Serial.print(mean_gy); Serial.print("\t"); Serial.println(mean_gz); Serial.print("Your offsets:\t"); Serial.print(ax_offset); Serial.print("\t"); Serial.print(ay_offset); Serial.print("\t"); Serial.print(az_offset); Serial.print("\t"); Serial.print(gx_offset); Serial.print("\t"); Serial.print(gy_offset); Serial.print("\t"); Serial.println(gz_offset); Serial.println("\nData is printed as: acelX acelY acelZ giroX giroY giroZ"); Serial.println("Check that your sensor readings are close to 0 0 16384 0 0 0"); Serial.println("If calibration was succesful write down your offsets so you can set them in your projects using something similar to mpu.setXAccelOffset(youroffset)"); while (1); } }

/////////////////////////////////// FUNCTIONS //////////////////////////////////// void meansensors(){ long i=0,buff_ax=0,buff_ay=0,buff_az=0,buff_gx=0,buff_gy=0,buff_gz=0;

while (i<(buffersize+101)){ // read raw accel/gyro measurements from device accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

if (i>100 && i<=(buffersize+100)){ //First 100 measures are discarded
  buff_ax=buff_ax+ax;
  buff_ay=buff_ay+ay;
  buff_az=buff_az+az;
  buff_gx=buff_gx+gx;
  buff_gy=buff_gy+gy;
  buff_gz=buff_gz+gz;
}
if (i==(buffersize+100)){
  mean_ax=buff_ax/buffersize;
  mean_ay=buff_ay/buffersize;
  mean_az=buff_az/buffersize;
  mean_gx=buff_gx/buffersize;
  mean_gy=buff_gy/buffersize;
  mean_gz=buff_gz/buffersize;
}
i++;
delay(2); //Needed so we don't get repeated measures

} }

void calibration(){ ax_offset=-mean_ax/8; ay_offset=-mean_ay/8; az_offset=(16384-mean_az)/8;

gx_offset=-mean_gx/4; gy_offset=-mean_gy/4; gz_offset=-mean_gz/4; while (1){ int ready=0; accelgyro.setXAccelOffset(ax_offset); accelgyro.setYAccelOffset(ay_offset); accelgyro.setZAccelOffset(az_offset);

accelgyro.setXGyroOffset(gx_offset);
accelgyro.setYGyroOffset(gy_offset);
accelgyro.setZGyroOffset(gz_offset);

meansensors();
Serial.println("...");

if (abs(mean_ax)<=acel_deadzone) ready++;
else ax_offset=ax_offset-mean_ax/acel_deadzone;

if (abs(mean_ay)<=acel_deadzone) ready++;
else ay_offset=ay_offset-mean_ay/acel_deadzone;

if (abs(16384-mean_az)<=acel_deadzone) ready++;
else az_offset=az_offset+(16384-mean_az)/acel_deadzone;

if (abs(mean_gx)<=giro_deadzone) ready++;
else gx_offset=gx_offset-mean_gx/(giro_deadzone+1);

if (abs(mean_gy)<=giro_deadzone) ready++;
else gy_offset=gy_offset-mean_gy/(giro_deadzone+1);

if (abs(mean_gz)<=giro_deadzone) ready++;
else gz_offset=gz_offset-mean_gz/(giro_deadzone+1);

if (ready==6) break;

} } ``

I also tried Jeff Rowberg's MPU6050 Library - IMU_Zero Sketch and ran it for 30 minutes, no offset were shown on my serial monitor :'(

IMU_Zero Sketch ``

include "I2Cdev.h"

include "MPU6050.h"

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation // is used in I2Cdev.h

if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

#include "Wire.h"

endif

// class default I2C address is 0x68 // specific I2C addresses may be passed as a parameter here // AD0 low = 0x68 (default for InvenSense evaluation board) // AD0 high = 0x69 MPU6050 accelgyro; //MPU6050 accelgyro(0x69); // <-- use for AD0 high

const char LBRACKET = '['; const char RBRACKET = ']'; const char COMMA = ','; const char BLANK = ' '; const char PERIOD = '.';

const int iAx = 0; const int iAy = 1; const int iAz = 2; const int iGx = 3; const int iGy = 4; const int iGz = 5;

const int usDelay = 3150; // empirical, to hold sampling to 200 Hz const int NFast = 1000; // the bigger, the better (but slower) const int NSlow = 10000; // .. const int LinesBetweenHeaders = 5; int LowValue[6]; int HighValue[6]; int Smoothed[6]; int LowOffset[6]; int HighOffset[6]; int Target[6]; int LinesOut; int N;

void ForceHeader() { LinesOut = 99; }

void GetSmoothed() { int16_t RawValue[6]; int i; long Sums[6]; for (i = iAx; i <= iGz; i++) { Sums[i] = 0; } // unsigned long Start = micros();

for (i = 1; i <= N; i++)
  { // get sums
    accelgyro.getMotion6(&RawValue[iAx], &RawValue[iAy], &RawValue[iAz], 
                         &RawValue[iGx], &RawValue[iGy], &RawValue[iGz]);
    if ((i % 500) == 0)
      Serial.print(PERIOD);
    delayMicroseconds(usDelay);
    for (int j = iAx; j <= iGz; j++)
      Sums[j] = Sums[j] + RawValue[j];
  } // get sums

// unsigned long usForN = micros() - Start; // Serial.print(" reading at "); // Serial.print(1000000/((usForN+N/2)/N)); // Serial.println(" Hz"); for (i = iAx; i <= iGz; i++) { Smoothed[i] = (Sums[i] + N/2) / N ; } } // GetSmoothed

void Initialize() { // join I2C bus (I2Cdev library doesn't do this automatically)

if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

    Wire.begin();
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
    Fastwire::setup(400, true);
#endif

Serial.begin(9600);

// initialize device
Serial.println("Initializing I2C devices...");
accelgyro.initialize();

// verify connection
Serial.println("Testing device connections...");
Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed");

} // Initialize

void SetOffsets(int TheOffsets[6]) { accelgyro.setXAccelOffset(TheOffsets [iAx]); accelgyro.setYAccelOffset(TheOffsets [iAy]); accelgyro.setZAccelOffset(TheOffsets [iAz]); accelgyro.setXGyroOffset (TheOffsets [iGx]); accelgyro.setYGyroOffset (TheOffsets [iGy]); accelgyro.setZGyroOffset (TheOffsets [iGz]); } // SetOffsets

void ShowProgress() { if (LinesOut >= LinesBetweenHeaders) { // show header Serial.println("\tXAccel\t\t\tYAccel\t\t\t\tZAccel\t\t\tXGyro\t\t\tYGyro\t\t\tZGyro"); LinesOut = 0; } // show header Serial.print(BLANK); for (int i = iAx; i <= iGz; i++) { Serial.print(LBRACKET); Serial.print(LowOffset[i]), Serial.print(COMMA); Serial.print(HighOffset[i]); Serial.print("] --> ["); Serial.print(LowValue[i]); Serial.print(COMMA); Serial.print(HighValue[i]); if (i == iGz) { Serial.println(RBRACKET); } else { Serial.print("]\t"); } } LinesOut++; } // ShowProgress

void PullBracketsIn() { boolean AllBracketsNarrow; boolean StillWorking; int NewOffset[6];

Serial.println("\nclosing in:");
AllBracketsNarrow = false;
ForceHeader();
StillWorking = true;
while (StillWorking) 
  { StillWorking = false;
    if (AllBracketsNarrow && (N == NFast))
      { SetAveraging(NSlow); }
    else
      { AllBracketsNarrow = true; }// tentative
    for (int i = iAx; i <= iGz; i++)
      { if (HighOffset[i] <= (LowOffset[i]+1))
          { NewOffset[i] = LowOffset[i]; }
        else
          { // binary search
            StillWorking = true;
            NewOffset[i] = (LowOffset[i] + HighOffset[i]) / 2;
            if (HighOffset[i] > (LowOffset[i] + 10))
              { AllBracketsNarrow = false; }
          } // binary search
      }
    SetOffsets(NewOffset);
    GetSmoothed();
    for (int i = iAx; i <= iGz; i++)
      { // closing in
        if (Smoothed[i] > Target[i])
          { // use lower half
            HighOffset[i] = NewOffset[i];
            HighValue[i] = Smoothed[i];
          } // use lower half
        else
          { // use upper half
            LowOffset[i] = NewOffset[i];
            LowValue[i] = Smoothed[i];
          } // use upper half
      } // closing in
    ShowProgress();
  } // still working

} // PullBracketsIn

void PullBracketsOut() { boolean Done = false; int NextLowOffset[6]; int NextHighOffset[6];

Serial.println("expanding:");
ForceHeader();

while (!Done)
  { Done = true;
    SetOffsets(LowOffset);
    GetSmoothed();
    for (int i = iAx; i <= iGz; i++)
      { // got low values
        LowValue[i] = Smoothed[i];
        if (LowValue[i] >= Target[i])
          { Done = false;
            NextLowOffset[i] = LowOffset[i] - 1000;
          }
        else
          { NextLowOffset[i] = LowOffset[i]; }
      } // got low values

    SetOffsets(HighOffset);
    GetSmoothed();
    for (int i = iAx; i <= iGz; i++)
      { // got high values
        HighValue[i] = Smoothed[i];
        if (HighValue[i] <= Target[i])
          { Done = false;
            NextHighOffset[i] = HighOffset[i] + 1000;
          }
        else
          { NextHighOffset[i] = HighOffset[i]; }
      } // got high values
    ShowProgress();
    for (int i = iAx; i <= iGz; i++)
      { LowOffset[i] = NextLowOffset[i];   // had to wait until ShowProgress done
        HighOffset[i] = NextHighOffset[i]; // ..
      }
 } // keep going

} // PullBracketsOut

void SetAveraging(int NewN) { N = NewN; Serial.print("averaging "); Serial.print(N); Serial.println(" readings each time"); } // SetAveraging

void setup() { Initialize(); for (int i = iAx; i <= iGz; i++) { // set targets and initial guesses Target[i] = 0; // must fix for ZAccel HighOffset[i] = 0; LowOffset[i] = 0; } // set targets and initial guesses Target[iAz] = 16384; SetAveraging(NFast);

PullBracketsOut();
PullBracketsIn();

Serial.println("-------------- done --------------");

} // setup

void loop() { } // loop ``

gojunnyo commented 5 years ago

I doubled checked my Interrupt connections, there is no problem with it. It passed the continuity test. I doubt it if there is a problem with my adaptation to your code.

gojunnyo commented 5 years ago

I got it working now sir, I commented this line attachInterrupt(intPin, myinthandler, RISING); // define interrupt for INT pin output of MPU9250

and replaced this line ``` if(newData == true) { // On interrupt, read data newData = false;



with ` if (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01)`
gojunnyo commented 5 years ago

Any reason why the first line doesn't work?

gojunnyo commented 5 years ago

Now I don't understand why my readings are erratic. The sensor is not moving!!

Using Mahony filter

Lin_ax, Lin_ay, Lin_az: 896.33, -141.85, -402.46 mg
sumCount = 250
sum = 0.51
rate = 486.54 Hz
Yaw, Pitch, Roll: 27.04, 3.39, 65.97
Grav_x, Grav_y, Grav_z: -911.71, 59.17, 406.55 mg
Lin_ax, Lin_ay, Lin_az: 912.50, -31.95, -394.71 mg
sumCount = 250
sum = 0.51
rate = 486.28 Hz
Yaw, Pitch, Roll: 11.19, 0.79, 72.02
Grav_x, Grav_y, Grav_z: -951.10, 13.78, 308.58 mg
Lin_ax, Lin_ay, Lin_az: 952.62, 14.73, -303.70 mg
sumCount = 250
sum = 0.52
rate = 483.35 Hz
Yaw, Pitch, Roll: 21.75, 1.13, 69.27
Grav_x, Grav_y, Grav_z: -935.10, 19.74, 353.84 mg
Lin_ax, Lin_ay, Lin_az: 936.56, 9.19, -343.46 mg
sumCount = 250
sum = 0.52
rate = 485.00 Hz
Yaw, Pitch, Roll: 29.96, 2.01, 66.68
Grav_x, Grav_y, Grav_z: -917.77, 35.00, 395.58 mg
Lin_ax, Lin_ay, Lin_az: 915.75, -5.95, -385.32 mg
sumCount = 250
sum = 0.51
rate = 485.61 Hz
Yaw, Pitch, Roll: 2.53, -1.25, 65.65
Grav_x, Grav_y, Grav_z: -910.85, -21.81, 412.15 mg
Lin_ax, Lin_ay, Lin_az: 914.03, 52.58, -403.36 mg
sumCount = 250
sum = 0.52
rate = 484.86 Hz
Yaw, Pitch, Roll: 35.42, 6.64, 65.68
Grav_x, Grav_y, Grav_z: -905.18, 115.58, 409.00 mg
Lin_ax, Lin_ay, Lin_az: 907.63, -89.27, -396.98 mg
sumCount = 250
sum = 0.52
rate = 483.66 Hz
Yaw, Pitch, Roll: 46.31, -3.02, 71.85
Grav_x, Grav_y, Grav_z: -948.94, -52.77, 311.01 mg
Lin_ax, Lin_ay, Lin_az: 950.10, 80.66, -300.58 mg
sumCount = 250
sum = 0.52
rate = 483.48 Hz
Yaw, Pitch, Roll: 35.39, 1.75, 70.41
Grav_x, Grav_y, Grav_z: -941.66, 30.55, 335.16 mg
Lin_ax, Lin_ay, Lin_az: 945.45, -3.02, -324.73 mg
sumCount = 250
sum = 0.52
rate = 485.15 Hz
Yaw, Pitch, Roll: 26.92, -5.28, 74.27
Grav_x, Grav_y, Grav_z: -958.48, -92.11, 269.89 mg
Lin_ax, Lin_ay, Lin_az: 958.72, 120.31, -258.23 mg
sumCount = 250
sum = 0.52
rate = 484.02 Hz
Yaw, Pitch, Roll: 4.73, 6.85, 64.18
Grav_x, Grav_y, Grav_z: -893.74, 119.27, 432.43 mg
Lin_ax, Lin_ay, Lin_az: 894.11, -90.03, -423.40 mg
sumCount = 250
sum = 0.52
rate = 484.98 Hz

Using Madgwick Filter

Yaw, Pitch, Roll: 173.36, 5.58, 70.52
Grav_x, Grav_y, Grav_z: -938.29, 97.17, 331.93 mg
Lin_ax, Lin_ay, Lin_az: 940.79, -65.43, -322.65 mg
sumCount = 170
sum = 0.52
rate = 327.88 Hz
Yaw, Pitch, Roll: 173.63, 5.89, 70.03
Grav_x, Grav_y, Grav_z: -934.90, 102.70, 339.72 mg
Lin_ax, Lin_ay, Lin_az: 938.81, -72.49, -328.13 mg
sumCount = 170
sum = 0.52
rate = 327.59 Hz
Yaw, Pitch, Roll: 173.25, 6.10, 69.71
Grav_x, Grav_y, Grav_z: -932.63, 106.28, 344.83 mg
Lin_ax, Lin_ay, Lin_az: 935.50, -75.09, -336.22 mg
sumCount = 170
sum = 0.52
rate = 329.20 Hz
Yaw, Pitch, Roll: 172.72, 6.30, 69.41
Grav_x, Grav_y, Grav_z: -930.46, 109.82, 349.56 mg
Lin_ax, Lin_ay, Lin_az: 934.36, -79.36, -339.55 mg
sumCount = 170
sum = 0.52
rate = 329.26 Hz
Yaw, Pitch, Roll: 172.75, 5.91, 69.35
Grav_x, Grav_y, Grav_z: -930.77, 102.99, 350.81 mg
Lin_ax, Lin_ay, Lin_az: 932.11, -72.65, -342.63 mg
sumCount = 170
sum = 0.52
rate = 327.44 Hz
Yaw, Pitch, Roll: 172.30, 5.41, 69.92
Grav_x, Grav_y, Grav_z: -935.03, 94.22, 341.82 mg
Lin_ax, Lin_ay, Lin_az: 937.72, -65.77, -327.72 mg
sumCount = 170
sum = 0.52
rate = 326.42 Hz
gojunnyo commented 5 years ago

This is my adaptation to your code.

#include "Wire.h"   

//Magnetometer Registers
#define AK8963_ADDRESS   0x0C
#define WHO_AM_I_AK8963  0x00 // should return 0x48
#define INFO             0x01
#define AK8963_ST1       0x02  // data ready status bit 0
#define AK8963_XOUT_L     0x03  // data
#define AK8963_XOUT_H    0x04
#define AK8963_YOUT_L    0x05
#define AK8963_YOUT_H    0x06
#define AK8963_ZOUT_L    0x07
#define AK8963_ZOUT_H    0x08
#define AK8963_ST2       0x09  // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL      0x0A  // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC      0x0C  // Self test control
#define AK8963_I2CDIS    0x0F  // I2C disable
#define AK8963_ASAX      0x10  // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value

#define SELF_TEST_X_GYRO 0x00                  
#define SELF_TEST_Y_GYRO 0x01                                                                          
#define SELF_TEST_Z_GYRO 0x02

/*#define X_FINE_GAIN      0x03 // [7:0] fine gain
#define Y_FINE_GAIN      0x04
#define Z_FINE_GAIN      0x05
#define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC   0x07
#define YA_OFFSET_H      0x08
#define YA_OFFSET_L_TC   0x09
#define ZA_OFFSET_H      0x0A
#define ZA_OFFSET_L_TC   0x0B */

#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E    
#define SELF_TEST_Z_ACCEL 0x0F

#define SELF_TEST_A      0x10

#define XG_OFFSET_H      0x13  // User-defined trim values for gyroscope
#define XG_OFFSET_L      0x14
#define YG_OFFSET_H      0x15
#define YG_OFFSET_L      0x16
#define ZG_OFFSET_H      0x17
#define ZG_OFFSET_L      0x18
#define SMPLRT_DIV       0x19
#define CONFIG           0x1A
#define GYRO_CONFIG      0x1B
#define ACCEL_CONFIG     0x1C
#define ACCEL_CONFIG2    0x1D
#define LP_ACCEL_ODR     0x1E   
#define WOM_THR          0x1F   

#define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
#define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms

#define FIFO_EN          0x23
#define I2C_MST_CTRL     0x24   
#define I2C_SLV0_ADDR    0x25
#define I2C_SLV0_REG     0x26
#define I2C_SLV0_CTRL    0x27
#define I2C_SLV1_ADDR    0x28
#define I2C_SLV1_REG     0x29
#define I2C_SLV1_CTRL    0x2A
#define I2C_SLV2_ADDR    0x2B
#define I2C_SLV2_REG     0x2C
#define I2C_SLV2_CTRL    0x2D
#define I2C_SLV3_ADDR    0x2E
#define I2C_SLV3_REG     0x2F
#define I2C_SLV3_CTRL    0x30
#define I2C_SLV4_ADDR    0x31
#define I2C_SLV4_REG     0x32
#define I2C_SLV4_DO      0x33
#define I2C_SLV4_CTRL    0x34
#define I2C_SLV4_DI      0x35
#define I2C_MST_STATUS   0x36
#define INT_PIN_CFG      0x37
#define INT_ENABLE       0x38
#define DMP_INT_STATUS   0x39  // Check DMP interrupt
#define INT_STATUS       0x3A
#define ACCEL_XOUT_H     0x3B
#define ACCEL_XOUT_L     0x3C
#define ACCEL_YOUT_H     0x3D
#define ACCEL_YOUT_L     0x3E
#define ACCEL_ZOUT_H     0x3F
#define ACCEL_ZOUT_L     0x40
#define TEMP_OUT_H       0x41
#define TEMP_OUT_L       0x42
#define GYRO_XOUT_H      0x43
#define GYRO_XOUT_L      0x44
#define GYRO_YOUT_H      0x45
#define GYRO_YOUT_L      0x46
#define GYRO_ZOUT_H      0x47
#define GYRO_ZOUT_L      0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO      0x63
#define I2C_SLV1_DO      0x64
#define I2C_SLV2_DO      0x65
#define I2C_SLV3_DO      0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET  0x68
#define MOT_DETECT_CTRL  0x69
#define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2       0x6C
#define DMP_BANK         0x6D  // Activates a specific bank in the DMP
#define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
#define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
#define DMP_REG_1        0x70
#define DMP_REG_2        0x71 
#define FIFO_COUNTH      0x72
#define FIFO_COUNTL      0x73
#define FIFO_R_W         0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H      0x77
#define XA_OFFSET_L      0x78
#define YA_OFFSET_H      0x7A
#define YA_OFFSET_L      0x7B
#define ZA_OFFSET_H      0x7D
#define ZA_OFFSET_L      0x7E

// Using the MPU9250_MS5637 Add-On shield, ADO is set to 0 
// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
#define ADO 0
#if ADO
#define MPU9250_ADDRESS 0x69  // Device address when ADO = 1
#define AK8963_ADDRESS 0x0C   //  Address of magnetometer
#define MS5637_ADDRESS 0x76   // Address of altimeter
#else
#define MPU9250_ADDRESS 0x68  // Device address when ADO = 0
#define AK8963_ADDRESS 0x0C   //  Address of magnetometer
#define MS5637_ADDRESS 0x76   // Address of altimeter
#endif  

#define SerialDebug true  // set to true to get Serial output for debugging

// Set initial input parameters
enum Ascale {
  AFS_2G = 0,
  AFS_4G,
  AFS_8G,
  AFS_16G
};

enum Gscale {
  GFS_250DPS = 0,
  GFS_500DPS,
  GFS_1000DPS,
  GFS_2000DPS
};

enum Mscale {
  MFS_14BITS = 0, // 0.6 mG per LSB
  MFS_16BITS      // 0.15 mG per LSB
};

#define ADC_256  0x00 // define pressure and temperature conversion rates
#define ADC_512  0x02
#define ADC_1024 0x04
#define ADC_2048 0x06
#define ADC_4096 0x08
#define ADC_8192 0x0A
#define ADC_D1   0x40
#define ADC_D2   0x50

// Specify sensor full scale
uint8_t OSR = ADC_8192;     // set pressure amd temperature oversample rate
uint8_t Gscale = GFS_250DPS;
uint8_t Ascale = AFS_2G;
uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit magnetometer resolution
uint8_t Mmode = 0x06;        // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors

// Pin definitions
int intPin = 2;  // can be any pin
bool newData = false;
bool newMagData = false;

int myLed = 5;

int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro
int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0};  // Factory mag calibration and mag bias
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}, magScale[3]  = {0, 0, 0};      // Bias corrections for gyro and accelerometer
int16_t tempCount;            // temperature raw count output
float   temperature;          // Stores the MPU9250 gyro internal chip temperature in degrees Celsius
float SelfTest[6];            // holds results of gyro and accelerometer self test

// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float pi = 3.141592653589793238462643383279502884f;
float GyroMeasError = PI * (4.0f / 180.0f);   // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f  / 180.0f);   // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense; 
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy. 
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError;   // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;   // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f

uint32_t delt_t = 0, count = 0, sumCount = 0;  // used to control display output rate
float pitch, yaw, roll;
float a12, a22, a31, a32, a33;            // rotation matrix coefficients for Euler angles and gravity components
float deltat = 0.0f, sum = 0.0f;          // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0;                         // used to calculate integration interval

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
float lin_ax, lin_ay, lin_az;             // linear acceleration (acceleration with gravity component subtracted)
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};    // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f};       // vector to hold integral error for Mahony method

void setup()
{
  Serial.begin(115200);

  Wire.begin(); //(SDA, SCL) (21,22) are default on ESP32, 400 kHz I2C clock

  // Set up the interrupt pin, its set as active high, push-pull
  pinMode(intPin, INPUT);
  pinMode(myLed, OUTPUT);
  digitalWrite(myLed, LOW);

  //I2Cscan();// look for I2C devices on the bus

  // Read the WHO_AM_I register, this is a good test of communication
  Serial.println("MPU9250 9-axis motion sensor...");
  uint8_t c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
  Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);

  delay(1000); 

  if (c == 0x73) // WHO_AM_I should always be 0x71
  {  
    Serial.println("MPU9250 is online...");

    MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
    Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
    Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
    Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
    Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
    Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
    Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
    delay(1000);

   // get sensor resolutions, only need to do this once
   getAres();
   getGres();
   getMres();

   Serial.println(" Calibrate gyro and accel");
   accelgyrocalMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
   Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
   Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
  // Serial.println("accel biases"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
  // Serial.println("gyro biases"); Serial.println(gyro_bias[0]); Serial.println(gyro_bias[1]); Serial.println(gyro_bias[2]);

  delay(1000);  

  initMPU9250(); 
  Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature

  // Read the WHO_AM_I register of the magnetometer, this is a good test of communication
  byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963);  // Read WHO_AM_I register for AK8963
  Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);

  delay(1000); 

  // Get magnetometer calibration from AK8963 ROM
  initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer

  magcalMPU9250(magBias, magScale);
  Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]); 
  Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]); 
  delay(2000); // add delay to see results before serial spew of data

  if(SerialDebug) {
//  Serial.println("Calibration values: ");
  Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
  Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
  Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);
  }

  delay(1000);  

  //attachInterrupt(intPin, myinthandler, RISING);  // define interrupt for INT pin output of MPU9250

  }
  else
  {
    Serial.print("Could not connect to MPU9250: 0x");
    Serial.println(c, HEX);
    while(1) ; // Loop forever if communication doesn't happen
  }

}

void loop()
{  
   // If intPin goes high, all data registers have new data
    if (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // {  // On interrupt, read data
    // newData = false;  // reset newData flag
     readMPU9250Data(MPU9250Data); // INT cleared on any read

    // Now we'll calculate the accleration value into actual g's
     ax = (float)MPU9250Data[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
     ay = (float)MPU9250Data[1]*aRes - accelBias[1];   
     az = (float)MPU9250Data[2]*aRes - accelBias[2];  

    // Calculate the gyro value into actual degrees per second
     gx = (float)MPU9250Data[4]*gRes;  // get actual gyro value, this depends on scale being set
     gy = (float)MPU9250Data[5]*gRes;  
     gz = (float)MPU9250Data[6]*gRes; 

    newMagData = (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01);
    if(newMagData == true) { // wait for magnetometer data ready bit to be set
      readMagData(magCount);  // Read the x/y/z adc values

    // Calculate the magnetometer values in milliGauss
    // Include factory calibration per data sheet and user environmental corrections
      mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0];  // get actual magnetometer value, this depends on scale being set
      my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];  
      mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];  
      mx *= magScale[0];
      my *= magScale[1];
      mz *= magScale[2]; 
    }

    for(uint8_t i = 0; i < 10; i++) { // iterate a fixed number of times per data read cycle
    Now = micros();
    deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
    lastUpdate = Now;

    sum += deltat; // sum for averaging filter update rate
    sumCount++;

   MadgwickQuaternionUpdate(-ax, ay, az, gx*pi/180.0f, -gy*pi/180.0f, -gz*pi/180.0f,  my,  -mx, mz);
   //MahonyQuaternionUpdate(-ax, ay, az, gx*pi/180.0f, -gy*pi/180.0f, -gz*pi/180.0f,  my,  -mx, mz);
    }
 } 

   // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = millis() - count;
    if (delt_t > 500) { // update LCD once per half-second independent of read rate
/*
    if(SerialDebug) {
    Serial.print("ax = "); Serial.print((int)1000*ax);  
    Serial.print(" ay = "); Serial.print((int)1000*ay); 
    Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
    Serial.print("gx = "); Serial.print( gx, 2); 
    Serial.print(" gy = "); Serial.print( gy, 2); 
    Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
    Serial.print("mx = "); Serial.print( (int)mx ); 
    Serial.print(" my = "); Serial.print( (int)my ); 
    Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");

    Serial.print("q0 = "); Serial.print(q[0]);
    Serial.print(" qx = "); Serial.print(q[1]); 
    Serial.print(" qy = "); Serial.print(q[2]); 
    Serial.print(" qz = "); Serial.println(q[3]); 
    }                
    tempCount = readTempData();  // Read the gyro adc values
    temperature = ((float) tempCount) / 333.87f + 21.0f; // Gyro chip temperature in degrees Centigrade
   // Print temperature in degrees Centigrade      
    Serial.print("Gyro temperature is ");  Serial.print(temperature, 1);  Serial.println(" degrees C"); // Print T values to tenths of s degree C
    */
   // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
  // In this coordinate system, the positive z-axis is down toward Earth. 
  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
    //Software AHRS:
    yaw   = atan2f(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
    pitch = -asinf(2.0f * (q[1] * q[3] - q[0] * q[2]));
    roll  = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
    pitch *= 180.0f / PI;
    yaw   *= 180.0f / PI; 
    yaw   += 0.11; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
    if(yaw < 0) yaw   += 360.0f; // Ensure yaw stays between 0 and 360
   roll  *= 180.0f / PI;
  /*  a12 =   2.0f * (q[1] * q[2] + q[0] * q[3]);
    a22 =   q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3];
    a31 =   2.0f * (q[0] * q[1] + q[2] * q[3]);
    a32 =   2.0f * (q[1] * q[3] - q[0] * q[2]);
    a33 =   q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
    pitch = -asin(a32);
    roll  = atan2(a31, a33);
    yaw   = atan2(a12, a22);
    pitch *= 180.0f / pi;
    yaw   *= 180.0f / pi; 
    yaw   += 0.11; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
    if(yaw < 0) yaw   += 360.0f; // Ensure yaw stays between 0 and 360
    roll  *= 180.0f / pi;
    lin_ax = ax + a31;
    lin_ay = ay + a32;
    lin_az = az - a33; 
    */
    if(SerialDebug) {
    Serial.print("Yaw, Pitch, Roll: ");
    Serial.print(yaw, 2);
    Serial.print(", ");
    Serial.print(pitch, 2);
    Serial.print(", ");
    Serial.println(roll, 2);

    Serial.print("Grav_x, Grav_y, Grav_z: ");
    Serial.print(-a31*1000.0f, 2);
    Serial.print(", ");
    Serial.print(-a32*1000.0f, 2);
    Serial.print(", ");
    Serial.print(a33*1000.0f, 2);  Serial.println(" mg");
    Serial.print("Lin_ax, Lin_ay, Lin_az: ");
    Serial.print(lin_ax*1000.0f, 2);
    Serial.print(", ");
    Serial.print(lin_ay*1000.0f, 2);
    Serial.print(", ");
    Serial.print(lin_az*1000.0f, 2);  Serial.println(" mg");

    Serial.print("sumCount = "); Serial.println(sumCount);
    Serial.print("sum = "); Serial.println(sum);

    Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
    }

    digitalWrite(myLed, !digitalRead(myLed));
    count = millis(); 
    sumCount = 0;
    sum = 0;    
    }

}

//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================

void myinthandler()
{
  newData = true;
}

void getMres() {
  switch (Mscale)
  {
  // Possible magnetometer scales (and their register bit settings) are:
  // 14 bit resolution (0) and 16 bit resolution (1)
    case MFS_14BITS:
          mRes = 10.*4912./8190.; // Proper scale to return milliGauss
          break;
    case MFS_16BITS:
          mRes = 10.*4912./32760.0; // Proper scale to return milliGauss
          break;
  }
}

void getGres() {
  switch (Gscale)
  {
  // Possible gyro scales (and their register bit settings) are:
  // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
    case GFS_250DPS:
          gRes = 250.0/32768.0;
          break;
    case GFS_500DPS:
          gRes = 500.0/32768.0;
          break;
    case GFS_1000DPS:
          gRes = 1000.0/32768.0;
          break;
    case GFS_2000DPS:
          gRes = 2000.0/32768.0;
          break;
  }
}

void getAres() {
  switch (Ascale)
  {
  // Possible accelerometer scales (and their register bit settings) are:
  // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
    case AFS_2G:
          aRes = 2.0/32768.0;
          break;
    case AFS_4G:
          aRes = 4.0/32768.0;
          break;
    case AFS_8G:
          aRes = 8.0/32768.0;
          break;
    case AFS_16G:
          aRes = 16.0/32768.0;
          break;
  }
}

void readMPU9250Data(int16_t * destination)
{
  uint8_t rawData[14];  // x/y/z accel register data stored here
  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 14, &rawData[0]);  // Read the 14 raw data registers into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;  
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
  destination[3] = ((int16_t)rawData[6] << 8) | rawData[7] ;   
  destination[4] = ((int16_t)rawData[8] << 8) | rawData[9] ;  
  destination[5] = ((int16_t)rawData[10] << 8) | rawData[11] ;  
  destination[6] = ((int16_t)rawData[12] << 8) | rawData[13] ; 
}

void readAccelData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z accel register data stored here
  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;  
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
}

void readGyroData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z gyro register data stored here
  readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;  
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
}

void readMagData(int16_t * destination)
{
  uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
  readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
  uint8_t c = rawData[6]; // End data read by reading ST2 register
    if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
    destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ;  // Turn the MSB and LSB into a signed 16-bit value
    destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;  // Data stored as little Endian
    destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; 
   }
}

int16_t readTempData()
{
  uint8_t rawData[2];  // x/y/z gyro register data stored here
  readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
  return ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a 16-bit value
}

void initAK8963(float * destination)
{
  // First extract the factory calibration for each magnetometer axis
  uint8_t rawData[3];  // x/y/z gyro calibration data stored here
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
  delay(10);
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
  delay(10);
  readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
  destination[0] =  (float)(rawData[0] - 128)/256. + 1.;   // Return x-axis sensitivity adjustment values, etc.
  destination[1] =  (float)(rawData[1] - 128)/256. + 1.;  
  destination[2] =  (float)(rawData[2] - 128)/256. + 1.; 
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
  delay(10);
  // Configure the magnetometer for continuous read and highest resolution
  // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
  // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
  writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
  delay(10);
}

void initMPU9250()
{  
 // wake up device
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
  delay(100); // Wait for all registers to reset 

 // get stable time source
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Auto select clock source to be PLL gyroscope reference if ready else
  delay(200); 

 // Configure Gyro and Thermometer
 // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; 
 // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
 // be higher than 1 / 0.0059 = 170 Hz
 // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
 // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
  writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  

 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; a rate consistent with the filter update rate 
                                    // determined inset in CONFIG above

 // Set gyroscope full scale range
 // Range selects FS_SEL and GFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
  uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
 // c = c & ~0xE0; // Clear self-test bits [7:5] 
  c = c & ~0x03; // Clear Fchoice bits [1:0] 
  c = c & ~0x18; // Clear GFS bits [4:3]
  c = c | Gscale << 3; // Set full scale range for the gyro
 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register

 // Set accelerometer full-scale range configuration
  c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
 // c = c & ~0xE0; // Clear self-test bits [7:5] 
  c = c & ~0x18;  // Clear AFS bits [4:3]
  c = c | Ascale << 3; // Set full scale range for the accelerometer 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value

 // Set accelerometer sample rate configuration
 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
  c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
  c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
  c = c | 0x03;  // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value

 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting

  // Configure Interrupts and Bypass Enable
  // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
  // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips 
  // can join the I2C bus and all can be controlled by the Arduino as master
//   writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
   writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12);  // INT is 50 microsecond pulse and any read to clear  
   writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
   delay(100);
}

// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void accelgyrocalMPU9250(float * dest1, float * dest2)
{  
  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
  uint16_t ii, packet_count, fifo_count;
  //int32_t gyro_bias[3]  = {0.16, 1.20, 0.29}, accel_bias[3] = {26.98, 11, 130.56};
  //int32_t gyro_bias[3]  = {40, 156, 36}, accel_bias[3] = {463, 153, 18432};
  int32_t gyro_bias[3]  = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
 /*
 // reset device
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
  delay(100);

 // get stable time source; Auto select clock source to be PLL gyroscope reference if ready 
 // else use the internal oscillator, bits 2:0 = 001
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
  writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
  delay(200);                                    

// Configure device for bias calculation
  writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
  writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
  delay(15);

// Configure MPU6050 gyro and accelerometer for bias calculation
  writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity

// Configure FIFO to capture accelerometer and gyro data for bias calculation
  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 512 bytes in MPU-9150)
  delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes

// At end of sample accumulation, turn off FIFO sensor read
  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
  readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
  fifo_count = ((uint16_t)data[0] << 8) | data[1];
  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging

  for (ii = 0; ii < packet_count; ii++) {
    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
    readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;

    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
    accel_bias[1] += (int32_t) accel_temp[1];
    accel_bias[2] += (int32_t) accel_temp[2];
    gyro_bias[0]  += (int32_t) gyro_temp[0];
    gyro_bias[1]  += (int32_t) gyro_temp[1];
    gyro_bias[2]  += (int32_t) gyro_temp[2];

}
    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
    accel_bias[1] /= (int32_t) packet_count;
    accel_bias[2] /= (int32_t) packet_count;
    gyro_bias[0]  /= (int32_t) packet_count;
    gyro_bias[1]  /= (int32_t) packet_count;
    gyro_bias[2]  /= (int32_t) packet_count;

    Serial.println(accel_bias[0]);
    Serial.println(accel_bias[1]);
    Serial.println(accel_bias[2]);
    Serial.println(gyro_bias[0]);
    Serial.println(gyro_bias[1]);
    Serial.println(gyro_bias[2]);

    */

  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
  else {accel_bias[2] += (int32_t) accelsensitivity;}

// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
  data[3] = (-gyro_bias[1]/4)       & 0xFF;
  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
  data[5] = (-gyro_bias[2]/4)       & 0xFF;
  /*   Serial.println("Accel x = ");
     Serial.println(data[0]);
     Serial.println("Accel y = ");
     Serial.println(data[1]);
     Serial.println("Accel z = ");
     Serial.println(data[2]);
     Serial.println("Gyro x = ");
     Serial.println(data[3]);
     Serial.println("Gyro y = ");
     Serial.println(data[4]);
     Serial.println("Gyro z = ");
     Serial.println(data[5]); */
// Push gyro biases to hardware registers
  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
  writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
  writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
  writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
  writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
  writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);

// Output scaled gyro biases for display in the main program
  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;  
  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;

// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.

  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
  readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
  accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);

  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis

  for(ii = 0; ii < 3; ii++) {
    if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
  }

  // Construct total accelerometer bias, including calculated average accelerometer bias from above
  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
  accel_bias_reg[1] -= (accel_bias[1]/8);
  accel_bias_reg[2] -= (accel_bias[2]/8);

  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
  data[1] = (accel_bias_reg[0])      & 0xFF;
  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
  data[3] = (accel_bias_reg[1])      & 0xFF;
  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
  data[5] = (accel_bias_reg[2])      & 0xFF;
  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers

// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
/*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
  writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
  writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
  writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
  writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
  writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
*/
// Output scaled accelerometer biases for display in the main program
   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}

void magcalMPU9250(float * dest1, float * dest2) 
{
  uint16_t ii = 0, sample_count = 0;
  int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
  int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0};

  Serial.println("Mag Calibration: Wave device in a figure eight until done!");
  delay(4000);

    // shoot for ~fifteen seconds of mag data
    if(Mmode == 0x02) sample_count = 128;  // at 8 Hz ODR, new mag data is available every 125 ms
    if(Mmode == 0x06) sample_count = 1500;  // at 100 Hz ODR, new mag data is available every 10 ms
   for(ii = 0; ii < sample_count; ii++) {
    readMagData(mag_temp);  // Read the mag data   
    for (int jj = 0; jj < 3; jj++) {
      if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
      if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
    }
    if(Mmode == 0x02) delay(135);  // at 8 Hz ODR, new mag data is available every 125 ms
    if(Mmode == 0x06) delay(12);  // at 100 Hz ODR, new mag data is available every 10 ms
    }

//    Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
//    Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
//    Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);

    // Get hard iron correction
    mag_bias[0]  = (mag_max[0] + mag_min[0])/2;  // get average x mag bias in counts
    mag_bias[1]  = (mag_max[1] + mag_min[1])/2;  // get average y mag bias in counts
    mag_bias[2]  = (mag_max[2] + mag_min[2])/2;  // get average z mag bias in counts

    dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0];  // save mag biases in G for main program
    dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];   
    dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];  

    // Get soft iron correction estimate
    mag_scale[0]  = (mag_max[0] - mag_min[0])/2;  // get average x axis max chord length in counts
    mag_scale[1]  = (mag_max[1] - mag_min[1])/2;  // get average y axis max chord length in counts
    mag_scale[2]  = (mag_max[2] - mag_min[2])/2;  // get average z axis max chord length in counts

    float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
    avg_rad /= 3.0;

    dest2[0] = avg_rad/((float)mag_scale[0]);
    dest2[1] = avg_rad/((float)mag_scale[1]);
    dest2[2] = avg_rad/((float)mag_scale[2]);

   Serial.println("Mag Calibration done!");
}

// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
   uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
   uint8_t selfTest[6];
   int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
   float factoryTrim[6];
   uint8_t FS = 0;

  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);    // Set gyro sample rate to 1 kHz
  writeByte(MPU9250_ADDRESS, CONFIG, 0x02);        // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS);  // Set full scale range for the gyro to 250 dps
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g

  for( int ii = 0; ii < 200; ii++) {  // get average current values of gyro and acclerometer

  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);        // Read the six raw data registers into data array
  aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 

    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);       // Read the six raw data registers sequentially into data array
  gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  }

  for (int ii =0; ii < 3; ii++) {  // Get average of 200 values and store as average current readings
  aAvg[ii] /= 200;
  gAvg[ii] /= 200;
  }

// Configure the accelerometer for self-test
   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
   writeByte(MPU9250_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
   delay(25);  // Delay a while to let the device stabilize

  for( int ii = 0; ii < 200; ii++) {  // get average self-test values of gyro and acclerometer

  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
  aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 

    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  }

  for (int ii =0; ii < 3; ii++) {  // Get average of 200 values and store as average self-test readings
  aSTAvg[ii] /= 200;
  gSTAvg[ii] /= 200;
  }   

 // Configure the gyro and accelerometer for normal operation
   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);  
   writeByte(MPU9250_ADDRESS, GYRO_CONFIG,  0x00);  
   delay(25);  // Delay a while to let the device stabilize

   // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
   selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
   selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
   selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
   selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO);  // X-axis gyro self-test results
   selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO);  // Y-axis gyro self-test results
   selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO);  // Z-axis gyro self-test results

  // Retrieve factory self-test value from self-test code reads
   factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
   factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
   factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
   factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
   factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
   factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation

 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
 // To get percent, must multiply by 100
   for (int i = 0; i < 3; i++) {
     destination[i]   = 100.0f*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i] - 100.0f;   // Report percent differences
     destination[i+3] = 100.0f*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3] - 100.0f; // Report percent differences
   }

}

// simple function to scan for I2C devices on the bus
void I2Cscan() 
{
    // scan for i2c devices
  byte error, address;
  int nDevices;

  Serial.println("Scanning...");

  nDevices = 0;
  for(address = 1; address < 127; address++ ) 
  {
    // The i2c_scanner uses the return value of
    // the Write.endTransmisstion to see if
    // a device did acknowledge to the address.
    Wire.beginTransmission(address);
    error = Wire.endTransmission();

    if (error == 0)
    {
      Serial.print("I2C device found at address 0x");
      if (address<16) 
        Serial.print("0");
      Serial.print(address,HEX);
      Serial.println("  !");

      nDevices++;
    }
    else if (error==4) 
    {
      Serial.print("Unknown error at address 0x");
      if (address<16) 
        Serial.print("0");
      Serial.println(address,HEX);
    }    
  }
  if (nDevices == 0)
    Serial.println("No I2C devices found\n");
  else
    Serial.println("done\n");
}

// I2C read/write functions for the MPU9250 sensors

  void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
  Wire.beginTransmission(address);  // Initialize the Tx buffer
  Wire.write(subAddress);           // Put slave register address in Tx buffer
  Wire.write(data);                 // Put data in Tx buffer
  Wire.endTransmission();           // Send the Tx buffer
}

  uint8_t readByte(uint8_t address, uint8_t subAddress)
{
  uint8_t data = 0;                        // `data` will store the register data   
  Wire.beginTransmission(address);         // Initialize the Tx buffer
  Wire.write(subAddress);                  // Put slave register address in Tx buffer
  Wire.endTransmission(false);             // Send the Tx buffer, but send a restart to keep connection alive
  Wire.requestFrom(address, 1);            // Read two bytes from slave register address on MPU9250 
  data = Wire.read();                      // Fill Rx buffer with result
  return data;                             // Return data read from slave register
}

  void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{  
  Wire.beginTransmission(address);   // Initialize the Tx buffer
  Wire.write(subAddress);            // Put slave register address in Tx buffer
  Wire.endTransmission(false);       // Send the Tx buffer, but send a restart to keep connection alive
  uint8_t i = 0;
  Wire.requestFrom(address, count);  // Read bytes from slave register address 
  while (Wire.available()) {
        dest[i++] = Wire.read(); }         // Put read results in the Rx buffer
}

       void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
            float norm;
            float hx, hy, _2bx, _2bz;
            float s1, s2, s3, s4;
            float qDot1, qDot2, qDot3, qDot4;

            // Auxiliary variables to avoid repeated arithmetic
            float _2q1mx;
            float _2q1my;
            float _2q1mz;
            float _2q2mx;
            float _4bx;
            float _4bz;
            float _2q1 = 2.0f * q1;
            float _2q2 = 2.0f * q2;
            float _2q3 = 2.0f * q3;
            float _2q4 = 2.0f * q4;
            float _2q1q3 = 2.0f * q1 * q3;
            float _2q3q4 = 2.0f * q3 * q4;
            float q1q1 = q1 * q1;
            float q1q2 = q1 * q2;
            float q1q3 = q1 * q3;
            float q1q4 = q1 * q4;
            float q2q2 = q2 * q2;
            float q2q3 = q2 * q3;
            float q2q4 = q2 * q4;
            float q3q3 = q3 * q3;
            float q3q4 = q3 * q4;
            float q4q4 = q4 * q4;

            // Normalise accelerometer measurement
            norm = sqrtf(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            ax *= norm;
            ay *= norm;
            az *= norm;

            // Normalise magnetometer measurement
            norm = sqrtf(mx * mx + my * my + mz * mz);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            mx *= norm;
            my *= norm;
            mz *= norm;

            // Reference direction of Earth's magnetic field
            _2q1mx = 2.0f * q1 * mx;
            _2q1my = 2.0f * q1 * my;
            _2q1mz = 2.0f * q1 * mz;
            _2q2mx = 2.0f * q2 * mx;
            hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
            hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
            _2bx = sqrtf(hx * hx + hy * hy);
            _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
            _4bx = 2.0f * _2bx;
            _4bz = 2.0f * _2bz;

            // Gradient decent algorithm corrective step
            s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
            norm = 1.0f/norm;
            s1 *= norm;
            s2 *= norm;
            s3 *= norm;
            s4 *= norm;

            // Compute rate of change of quaternion
            qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
            qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
            qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
            qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;

            // Integrate to yield quaternion
            q1 += qDot1 * deltat;
            q2 += qDot2 * deltat;
            q3 += qDot3 * deltat;
            q4 += qDot4 * deltat;
            norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
            norm = 1.0f/norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;

        }
                  /* void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
            float norm;
            float hx, hy, bx, bz;
            float vx, vy, vz, wx, wy, wz;
            float ex, ey, ez;
            float pa, pb, pc;

            // Auxiliary variables to avoid repeated arithmetic
            float q1q1 = q1 * q1;
            float q1q2 = q1 * q2;
            float q1q3 = q1 * q3;
            float q1q4 = q1 * q4;
            float q2q2 = q2 * q2;
            float q2q3 = q2 * q3;
            float q2q4 = q2 * q4;
            float q3q3 = q3 * q3;
            float q3q4 = q3 * q4;
            float q4q4 = q4 * q4;   

            // Normalise accelerometer measurement
            norm = sqrtf(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f / norm;        // use reciprocal for division
            ax *= norm;
            ay *= norm;
            az *= norm;

            // Normalise magnetometer measurement
            norm = sqrtf(mx * mx + my * my + mz * mz);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f / norm;        // use reciprocal for division
            mx *= norm;
            my *= norm;
            mz *= norm;

            // Reference direction of Earth's magnetic field
            hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
            hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
            bx = sqrtf((hx * hx) + (hy * hy));
            bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);

            // Estimated direction of gravity and magnetic field
            vx = 2.0f * (q2q4 - q1q3);
            vy = 2.0f * (q1q2 + q3q4);
            vz = q1q1 - q2q2 - q3q3 + q4q4;
            wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
            wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
            wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);  

            // Error is cross product between estimated direction and measured direction of gravity
            ex = (ay * vz - az * vy) + (my * wz - mz * wy);
            ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
            ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
            if (Ki > 0.0f)
            {
                eInt[0] += ex;      // accumulate integral error
                eInt[1] += ey;
                eInt[2] += ez;
            }
            else
            {
                eInt[0] = 0.0f;     // prevent integral wind up
                eInt[1] = 0.0f;
                eInt[2] = 0.0f;
            }

            // Apply feedback terms
            gx = gx + Kp * ex + Ki * eInt[0];
            gy = gy + Kp * ey + Ki * eInt[1];
            gz = gz + Kp * ez + Ki * eInt[2];

            // Integrate rate of change of quaternion
            pa = q2;
            pb = q3;
            pc = q4;
            q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
            q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
            q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
            q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);

            // Normalise quaternion
            norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
            norm = 1.0f / norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;

        }
  */
kriswiner commented 5 years ago

How did you calibrate your sensors?

On Fri, Nov 16, 2018 at 2:38 AM gojunnyo notifications@github.com wrote:

Now I don't understand why my readings are erratic.

Using Mahony filter

Lin_ax, Lin_ay, Lin_az: 896.33, -141.85, -402.46 mg sumCount = 250 sum = 0.51 rate = 486.54 Hz Yaw, Pitch, Roll: 27.04, 3.39, 65.97 Grav_x, Grav_y, Grav_z: -911.71, 59.17, 406.55 mg Lin_ax, Lin_ay, Lin_az: 912.50, -31.95, -394.71 mg sumCount = 250 sum = 0.51 rate = 486.28 Hz Yaw, Pitch, Roll: 11.19, 0.79, 72.02 Grav_x, Grav_y, Grav_z: -951.10, 13.78, 308.58 mg Lin_ax, Lin_ay, Lin_az: 952.62, 14.73, -303.70 mg sumCount = 250 sum = 0.52 rate = 483.35 Hz Yaw, Pitch, Roll: 21.75, 1.13, 69.27 Grav_x, Grav_y, Grav_z: -935.10, 19.74, 353.84 mg Lin_ax, Lin_ay, Lin_az: 936.56, 9.19, -343.46 mg sumCount = 250 sum = 0.52 rate = 485.00 Hz Yaw, Pitch, Roll: 29.96, 2.01, 66.68 Grav_x, Grav_y, Grav_z: -917.77, 35.00, 395.58 mg Lin_ax, Lin_ay, Lin_az: 915.75, -5.95, -385.32 mg sumCount = 250 sum = 0.51 rate = 485.61 Hz Yaw, Pitch, Roll: 2.53, -1.25, 65.65 Grav_x, Grav_y, Grav_z: -910.85, -21.81, 412.15 mg Lin_ax, Lin_ay, Lin_az: 914.03, 52.58, -403.36 mg sumCount = 250 sum = 0.52 rate = 484.86 Hz Yaw, Pitch, Roll: 35.42, 6.64, 65.68 Grav_x, Grav_y, Grav_z: -905.18, 115.58, 409.00 mg Lin_ax, Lin_ay, Lin_az: 907.63, -89.27, -396.98 mg sumCount = 250 sum = 0.52 rate = 483.66 Hz Yaw, Pitch, Roll: 46.31, -3.02, 71.85 Grav_x, Grav_y, Grav_z: -948.94, -52.77, 311.01 mg Lin_ax, Lin_ay, Lin_az: 950.10, 80.66, -300.58 mg sumCount = 250 sum = 0.52 rate = 483.48 Hz Yaw, Pitch, Roll: 35.39, 1.75, 70.41 Grav_x, Grav_y, Grav_z: -941.66, 30.55, 335.16 mg Lin_ax, Lin_ay, Lin_az: 945.45, -3.02, -324.73 mg sumCount = 250 sum = 0.52 rate = 485.15 Hz Yaw, Pitch, Roll: 26.92, -5.28, 74.27 Grav_x, Grav_y, Grav_z: -958.48, -92.11, 269.89 mg Lin_ax, Lin_ay, Lin_az: 958.72, 120.31, -258.23 mg sumCount = 250 sum = 0.52 rate = 484.02 Hz Yaw, Pitch, Roll: 4.73, 6.85, 64.18 Grav_x, Grav_y, Grav_z: -893.74, 119.27, 432.43 mg Lin_ax, Lin_ay, Lin_az: 894.11, -90.03, -423.40 mg sumCount = 250 sum = 0.52 rate = 484.98 Hz

Using Madgwick Filter

Yaw, Pitch, Roll: 173.36, 5.58, 70.52 Grav_x, Grav_y, Grav_z: -938.29, 97.17, 331.93 mg Lin_ax, Lin_ay, Lin_az: 940.79, -65.43, -322.65 mg sumCount = 170 sum = 0.52 rate = 327.88 Hz Yaw, Pitch, Roll: 173.63, 5.89, 70.03 Grav_x, Grav_y, Grav_z: -934.90, 102.70, 339.72 mg Lin_ax, Lin_ay, Lin_az: 938.81, -72.49, -328.13 mg sumCount = 170 sum = 0.52 rate = 327.59 Hz Yaw, Pitch, Roll: 173.25, 6.10, 69.71 Grav_x, Grav_y, Grav_z: -932.63, 106.28, 344.83 mg Lin_ax, Lin_ay, Lin_az: 935.50, -75.09, -336.22 mg sumCount = 170 sum = 0.52 rate = 329.20 Hz Yaw, Pitch, Roll: 172.72, 6.30, 69.41 Grav_x, Grav_y, Grav_z: -930.46, 109.82, 349.56 mg Lin_ax, Lin_ay, Lin_az: 934.36, -79.36, -339.55 mg sumCount = 170 sum = 0.52 rate = 329.26 Hz Yaw, Pitch, Roll: 172.75, 5.91, 69.35 Grav_x, Grav_y, Grav_z: -930.77, 102.99, 350.81 mg Lin_ax, Lin_ay, Lin_az: 932.11, -72.65, -342.63 mg sumCount = 170 sum = 0.52 rate = 327.44 Hz Yaw, Pitch, Roll: 172.30, 5.41, 69.92 Grav_x, Grav_y, Grav_z: -935.03, 94.22, 341.82 mg Lin_ax, Lin_ay, Lin_az: 937.72, -65.77, -327.72 mg sumCount = 170 sum = 0.52 rate = 326.42 Hz

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/kriswiner/MPU9250/issues/323#issuecomment-439353402, or mute the thread https://github.com/notifications/unsubscribe-auth/AGY1qj96OYgt95V-8WulJZl1tmWqBvOcks5uvpWlgaJpZM4YW3-K .

gojunnyo commented 5 years ago

I used the above code, I let the sketch to output the Gyro and Accel Bias, and recorded the values. I put the recorded values into the int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; under the function accelgyrocalMPU9250();

Anddd I expect and completely accept that whatever I am doing, It might not or might be very very STUPID. And forgive me for that.

kriswiner commented 5 years ago

What about magnetometer calibration?

On Fri, Nov 16, 2018 at 9:44 AM gojunnyo notifications@github.com wrote:

I used the above code, I let the sketch to output the Gyro and Accel Bias, and recorded the values. I put the recorded values into the int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; under the function accelgyrocalMPU9250();

Anddd I expect and completely accept that whatever I am doing, It might not or might be very very STUPID. And forgive me for that.

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/kriswiner/MPU9250/issues/323#issuecomment-439471447, or mute the thread https://github.com/notifications/unsubscribe-auth/AGY1qm7bGxlqw8rVDR-PCT98be5lyTK8ks5uvvmUgaJpZM4YW3-K .

gojunnyo commented 5 years ago

I always do the figure eight wave every run of the program.

kriswiner commented 5 years ago

Not sure what to tell you except you might need a faster MCU. Can you check your calibration to make sure it is reasonable? if you compare Mz when the device is pointed up versus when it is pointed down, are the values equal and opposite?

On Fri, Nov 16, 2018 at 9:54 AM gojunnyo notifications@github.com wrote:

I always do the figure eight wave every run of the program.

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/kriswiner/MPU9250/issues/323#issuecomment-439474041, or mute the thread https://github.com/notifications/unsubscribe-auth/AGY1qqP_HhOD9kP699SHmLm2XUMwwDzCks5uvvu_gaJpZM4YW3-K .

gojunnyo commented 5 years ago

Do you mean Hz? or Mz is just another thing I am not familiar with?

kriswiner commented 5 years ago

z-component of the magnetic field

On Fri, Nov 16, 2018 at 10:18 AM gojunnyo notifications@github.com wrote:

Do you mean Hz? or Mz is just another thing I am not familiar with?

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/kriswiner/MPU9250/issues/323#issuecomment-439480988, or mute the thread https://github.com/notifications/unsubscribe-auth/AGY1qg_zq2RFzJTscQp52elTLsm2PdRNks5uvwGKgaJpZM4YW3-K .

gojunnyo commented 5 years ago

The values are so rough, Although I can say that they are opposite, but they are hardly the same. I have checked my location and updated the magnetic declination.

kriswiner commented 5 years ago

Declination shouldn't matter.

The jitter in the mag field should be < 10%, maybe closer to a few %, not rough.

On Fri, Nov 16, 2018 at 10:40 AM gojunnyo notifications@github.com wrote:

The values are so rough, Although I can say that they are opposite, but they are hardly the same. I have checked my location and updated the magnetic declination.

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/kriswiner/MPU9250/issues/323#issuecomment-439487259, or mute the thread https://github.com/notifications/unsubscribe-auth/AGY1qjHvuaIl-dABTqq2e9L884-1hzaBks5uvwaGgaJpZM4YW3-K .

gojunnyo commented 5 years ago

Hmmm so its good then, all points to MCU inefficiency problem

gojunnyo commented 5 years ago

Any suggestions sir that might help me in keeping this project? I still have 1 month left before our Oral Defense, enough time I suppose, to shift my study.

kriswiner commented 5 years ago

Get a better MCU.

On Fri, Nov 16, 2018 at 11:25 AM gojunnyo notifications@github.com wrote:

Any suggestions sir that might help me in keeping this project? I still have 1 month left before our Oral Defense, enough time I suppose, to shift my study.

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/kriswiner/MPU9250/issues/323#issuecomment-439500022, or mute the thread https://github.com/notifications/unsubscribe-auth/AGY1qsulOd8IuK_zU1WNR9Ui2xqrpL9_ks5uvxEkgaJpZM4YW3-K .

gojunnyo commented 5 years ago

Hi again sir! been busy with our exams.

I am currently faced with crucial options that will ultimately determine my future.

Since I am not getting what I expect to be used on our tailsitter,

OPTION 1: Buy the Ladybug MCU PROS: Faster MCU, good floating engine, RTC, 256 KB SRAM and 64 KB of flash memory CONS: Expensive for me, ₱782.66 (Ladybug) + ₱782.66 (for shipping) = ₱1,565.32!!!!

OPTION 2: Buy STM32 "Black Pill" PROS: M3 Arm-Cortex, 72Mhz, RTC, costs less than ₱200 or roughly 4 dollars! CONS: Poor documentation regarding this topic and I don't have much experience in these new boards.

OPTION 3: Buy Adafruit's BNO055 PROS: Easy read of data, with proper documentation and guide CONS: Freakin expensive, costs ₱2,200!!! exclusion of shipping which will cost around ₱130 The cost overall is roughly around 46.6 DOLLARS!

OPTION 4: Chinese BNO055 PROS: Does it offer specs as the Adafruit's BNO055? Not sure about this. CONS: It is cheaper than Adafruit and it has poor documentation.

OPTION 5: Change the orientation of the MPU9250 or MPU6050(Refer to the attached image) HOW? The MPU9250 will be perpendicular to the fuselage of the aircraft and not parallel. PROS: MPU9250's or MPU6050's roll will control the aircraft's yaw since this gyroscope value is easy to calibrate CONS: Yaw is ignored thus the capacity to stabilize the aircraft during hover will be greatly affected.

I just wanted to seek advice regarding on this "issues" or "challenges", I want to acquire decent results with budget-friendly hardware or techniques that can help me. Help me, kind sir, in choosing from these options. Hoping to hear from you soon.

cad