Closed Jiachenyin1 closed 4 years ago
model_config { model_name: 'avod_model' checkpoint_name: 'all_aug'
input_config {
bev_depth: 6
img_depth: 3
img_dims_w: 1200
img_dims_h: 360
}
rpn_config {
rpn_proposal_roi_crop_size: 3
rpn_fusion_method: 'mean'
rpn_train_nms_size: 1024
rpn_test_nms_size: 1024
rpn_nms_iou_thresh: 0.8
}
avod_config {
avod_proposal_roi_crop_size: 7
avod_positive_selection: 'not_bkg'
avod_nms_size: 100
avod_nms_iou_thresh: 0.01
avod_box_representation: 'box_4ca'
}
label_smoothing_epsilon: 0.001
expand_proposals_xz: 0.0
# To disable path drop, set both to 1.0
path_drop_probabilities: [0.9, 0.9]
train_on_all_samples: False
eval_all_samples: True
layers_config {
bev_feature_extractor {
bev_vgg_pyr {
vgg_conv1: [2, 32]
vgg_conv2: [2, 64]
vgg_conv3: [3, 128]
vgg_conv4: [3, 256]
l2_weight_decay: 0.0005
}
}
img_feature_extractor {
img_vgg_pyr {
vgg_conv1: [2, 32]
vgg_conv2: [2, 64]
vgg_conv3: [3, 128]
vgg_conv4: [3, 256]
l2_weight_decay: 0.0005
}
}
rpn_config {
cls_fc6: 256
cls_fc7: 256
reg_fc6: 256
reg_fc7: 256
l2_weight_decay: 0.0005
keep_prob: 0.5
}
avod_config {
# basic_fc_layers {
# num_layers: 3
# layer_sizes: [2048, 2048, 2048]
# l2_weight_decay: 0.005
# keep_prob: 0.5
# fusion_method: 'mean' # 'mean' or 'concat'
# }
fusion_fc_layers {
num_layers: 3
layer_sizes: [2048, 2048, 2048]
l2_weight_decay: 0.005
keep_prob: 0.5
fusion_method: 'mean' # 'mean', 'concat', or 'max'
fusion_type: 'early' # 'early', 'late', 'deep'
}
}
}
# Loss function weights
loss_config {
cls_loss_weight: 1.0
reg_loss_weight: 5.0
ang_loss_weight: 1.0
}
}
train_config {
batch_size: 1
optimizer {
adam_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.0001
decay_steps: 30000
decay_factor: 0.8
}
}
}
}
overwrite_checkpoints: False
max_checkpoints_to_keep: 20
max_iterations: 120000
checkpoint_interval: 2000
summary_interval: 50
summary_histograms: False
summary_img_images: True
summary_bev_images: True
allow_gpu_mem_growth: True
}
eval_config { eval_interval: 2000 eval_mode: 'val' ckpt_indices: -1 evaluate_repeatedly: True
allow_gpu_mem_growth: True
}
dataset_config { name: 'kitti'
dataset_dir: '/notebooks/DATA/Kitti/object'
# data_split: 'train'
data_split_dir: 'training'
has_labels: True
cluster_split: 'train'
classes: ['Car', 'Pedestrian', 'Cyclist']
num_clusters: [2, 1, 1]
bev_source: 'lidar'
aug_list: ['flipping', 'pca_jitter']
kitti_utils_config {
area_extents: [-40, 40, -5, 3, 0, 70]
voxel_size: 0.1
anchor_strides: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
density_threshold: 1
bev_generator {
slices {
height_lo: -0.2
height_hi: 2.3
num_slices: 5
}
}
mini_batch_config {
density_threshold: 1
rpn_config {
iou_2d_thresholds {
neg_iou_lo: 0.0
neg_iou_hi: 0.3
pos_iou_lo: 0.45
pos_iou_hi: 1.0
}
# iou_3d_thresholds {
# neg_iou_lo: 0.0
# neg_iou_hi: 0.3
# pos_iou_lo: 0.4
# pos_iou_hi: 1.0
# }
mini_batch_size: 512
}
avod_config {
iou_2d_thresholds {
neg_iou_lo: 0.0
neg_iou_hi: 0.45
pos_iou_lo: 0.55
pos_iou_hi: 1.0
}
mini_batch_size: 1024
}
}
}
}
You will need to make additional modifications to the code to support all 3 classes at once, just modifying the config will not work.
when I create multi_class trainning before gen_min_batch with car people and cyclists. when i val this model, only one class (car) is showing in result! I wodder if you have same issue,please tell me why ?