Closed kuriwaki closed 5 years ago
Now works with tidyeval, along with a few others:
library(ddi)
library(tibble)
library(dplyr)
data(g2016)
# 1. scalar input
select(g2016, cces_totdjt_vv, cces_n_vv, tot_votes, votes_djt) %>%
summarize_all(sum)
#> # A tibble: 1 x 4
#> cces_totdjt_vv cces_n_vv tot_votes votes_djt
#> <dbl> <dbl> <dbl> <dbl>
#> 1 12284 35829 136639786 62984824
## plug those numbers in
ddc(mu = 62984824/136639786, muhat = 12284/35829, N = 136639786, n = 35829)
#> [1] -0.003837163
# 2. vector input using "with"
with(g2016, ddc(mu = pct_djt_voters, muhat = cces_pct_djt_vv, N = tot_votes, n = cces_n_vv))
#> [1] -0.0059541279 -0.0062341071 -0.0023488019 -0.0061097707 -0.0009864919
#> [6] -0.0025746344 -0.0035362241 -0.0033951165 0.0014015382 -0.0029747918
#> [11] -0.0038228152 -0.0001757426 -0.0073716139 -0.0036437192 -0.0069956521
#> [16] -0.0058255411 -0.0059093759 -0.0057837854 -0.0040533230 -0.0047893714
#> [21] -0.0024905368 -0.0028280876 -0.0050296619 -0.0043292576 -0.0056626724
#> [26] -0.0069305025 -0.0046563153 -0.0075840944 -0.0047785897 -0.0037497506
#> [31] -0.0028289070 -0.0025619899 -0.0031936586 -0.0051968951 -0.0078308914
#> [36] -0.0057088185 -0.0065654840 -0.0030642004 -0.0039137353 -0.0039907269
#> [41] -0.0040871158 -0.0069019981 -0.0050741833 -0.0044884762 -0.0059634270
#> [46] -0.0034491625 -0.0040918085 -0.0024121681 -0.0075404659 -0.0051378753
#> [51] -0.0086086072
# 3. vector input in tidy tibble
transmute(g2016, st,
ddc = ddc(mu = pct_djt_voters, muhat = cces_pct_djt_vv, N = tot_votes, n = cces_n_vv))
#> # A tibble: 51 x 2
#> st ddc
#> <chr> <dbl>
#> 1 AL -0.00595
#> 2 AK -0.00623
#> 3 AZ -0.00235
#> 4 AR -0.00611
#> 5 CA -0.000986
#> 6 CO -0.00257
#> 7 CT -0.00354
#> 8 DE -0.00340
#> 9 DC 0.00140
#> 10 FL -0.00297
#> # … with 41 more rows
Created on 2019-10-28 by the reprex package (v0.3.0)
quick fix. change to NSE
Created on 2019-02-02 by the reprex package (v0.2.1)