kzhai / PyLDA

A Latent Dirichlet Allocation implementation in Python.
50 stars 22 forks source link

find some error! #1

Closed andyyuan78 closed 9 years ago

andyyuan78 commented 9 years ago

to make it run example , we sould: 1.use --training_iterations , not ----number_of_iterations 2.express the ap.tar.gz and copy the file to root like:

ubgpu@ubgpu:~/github/PyLDA$ tree . ├── doc.dat ├── input │   ├── ap │   └── ap.tar.gz ├── output ├── raw │   └── ap.tar.gz ├── README.md ├── src │   └── lda │   ├── hybrid.py │   ├── inferencer.py │   ├── init.py │   ├── init.pyc │   ├── launch_test.py │   ├── launch_train.py │   ├── monte_carlo.py │   └── variational_bayes.py ├── test.dat ├── train.dat └── voc.dat

6 directories, 15 files ubgpu@ubgpu:~/github/PyLDA$ cd src/ ubgpu@ubgpu:~/github/PyLDA/src$ python -m lda.launch_train --input_directory=../ input/ap --output_directory=../output/ --number_of_topics=10 --training_iterations=100 --inference_mode=0 successfully load all training docs from /home/ubgpu/github/PyLDA/train.dat... successfully load all the words from /home/ubgpu/github/PyLDA/voc.dat... ========== ========== ========== ========== ========== output_directory=../output/../150730-225540-lda-I100-S10-K10-aa0.100000-ab0.000147-im0/ input_directory=.. corpus_name=.. training_iterations=100

kzhai commented 9 years ago

Thanks, Andy. Just corrected the README.md file, and added full instructions on getting the dataset ready. I think you need to extract the ap dataset into the "input" directory. You can try follow the instructions in the README.md file and see if that helps.

Best, Ke