Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with `pipe.tokenizer.pad_token_id = model.config.eos_token_id`. #26207
from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
messages = [
SystemMessage(content="You're a helpful assistant"),
HumanMessage(
content="What happens when an unstoppable force meets an immovable object?"
),
]
ai_msg = chat_model.invoke(messages)
Error Message and Stack Trace (if applicable)
ValueError Traceback (most recent call last)
Cell In[20], line 3523 from langchain_core.messages import (
24 HumanMessage,
25 SystemMessage,
26 )
28 messages = [
29 SystemMessage(content="You're a helpful assistant"),
30 HumanMessage(
31 content="What happens when an unstoppable force meets an immovable object?"
32 ),
33 ]
---> 35 ai_msg = chat_model.invoke(messages)
ValueError: Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with pipe.tokenizer.pad_token_id = model.config.eos_token_id.
Description
I am trying to use langchain chat model with meta-llama/Meta-Llama-3.1-8B-Instruct, but cannot init a chat model, with the tokenizer issue.
Checked other resources
Example Code
from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
llm = HuggingFacePipeline.from_model_id( model_id=model_id, task="text-generation", device=None, model_kwargs=dict( device_map="auto", ), pipeline_kwargs=dict( temperature=0.6, max_new_tokens=512, repetition_penalty=1.1 ), )
chat_model = ChatHuggingFace(llm=llm)
from langchain_core.messages import ( HumanMessage, SystemMessage, )
messages = [ SystemMessage(content="You're a helpful assistant"), HumanMessage( content="What happens when an unstoppable force meets an immovable object?" ), ]
ai_msg = chat_model.invoke(messages)
Error Message and Stack Trace (if applicable)
ValueError Traceback (most recent call last) Cell In[20], line 35 23 from langchain_core.messages import ( 24 HumanMessage, 25 SystemMessage, 26 ) 28 messages = [ 29 SystemMessage(content="You're a helpful assistant"), 30 HumanMessage( 31 content="What happens when an unstoppable force meets an immovable object?" 32 ), 33 ] ---> 35 ai_msg = chat_model.invoke(messages)
File ~/miniconda3/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py:277, in BaseChatModel.invoke(self, input, config, stop, kwargs) 266 def invoke( 267 self, 268 input: LanguageModelInput, (...) 272 kwargs: Any, 273 ) -> BaseMessage: 274 config = ensure_config(config) 275 return cast( 276 ChatGeneration, ... 152 ) 153 else: 154 t_padding_value = tokenizer.pad_token_id
ValueError: Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with
pipe.tokenizer.pad_token_id = model.config.eos_token_id
.Description
I am trying to use langchain chat model with meta-llama/Meta-Llama-3.1-8B-Instruct, but cannot init a chat model, with the tokenizer issue.
System Info
langchain==0.2.16 langchain-community==0.2.16 langchain-core==0.2.38 langchain-huggingface==0.0.3 langchain-text-splitters==0.2.4