langchain-ai / langchain

🦜🔗 Build context-aware reasoning applications
https://python.langchain.com
MIT License
95.38k stars 15.47k forks source link

"cannot pickle 'classmethod' object error" in ChatGroq #27144

Closed VamshiKrsna closed 1 month ago

VamshiKrsna commented 1 month ago

Checked other resources

Example Code

The following code :

from langchain_groq import ChatGroq

It is giving me this error every time :

TypeError Traceback (most recent call last) Cell In[7], line 2 1 import os ----> 2 from langchain_groq import ChatGroq 3 from langchain_openai import OpenAIEmbeddings 4 from langchain.text_splitter import RecursiveCharacterTextSplitter

File C:\Python312\Lib\site-packages\langchain_groq__init.py:1 ----> 1 from langchain_groq.chat_models import ChatGroq 3 all__ = ["ChatGroq"]

File C:\Python312\Lib\site-packages\langchain_groq\chat_models.py:89 79 from pydantic import ( 80 BaseModel, 81 ConfigDict, (...) 84 model_validator, 85 ) 86 from typing_extensions import Self ---> 89 class ChatGroq(BaseChatModel): 90 """Groq Chat large language models API. 91 92 To use, you should have the (...) 298 'logprobs': None} 299 """ 301 client: Any = Field(default=None, exclude=True) #: :meta private:

File C:\Python312\Lib\site-packages\pydantic\v1\main.py:221, in ModelMetaclass.new(mcs, name, bases, namespace, **kwargs) 219 elif is_valid_field(var_name) and var_name not in annotations and can_be_changed: 220 validate_field_name(bases, var_name) --> 221 inferred = ModelField.infer( 222 name=var_name, 223 value=value, 224 annotation=annotations.get(var_name, Undefined), 225 class_validators=vg.get_validators(var_name), 226 config=config, 227 ) 228 if var_name in fields: 229 if lenientissubclass(inferred.type, fields[varname].type):

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:504, in ModelField.infer(cls, name, value, annotation, class_validators, config) 501 required = False 502 annotation = get_annotation_from_field_info(annotation, field_info, name, config.validateassignment) --> 504 return cls( 505 name=name, 506 type=annotation, 507 alias=field_info.alias, 508 class_validators=class_validators, 509 default=value, 510 default_factory=field_info.default_factory, 511 required=required, 512 model_config=config, 513 field_info=field_info, 514 )

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:434, in ModelField.init(self, name, type_, class_validators, model_config, default, default_factory, required, final, alias, field_info) 432 self.shape: int = SHAPE_SINGLETON 433 self.model_config.prepare_field(self) --> 434 self.prepare()

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:544, in ModelField.prepare(self) 537 def prepare(self) -> None: 538 """ 539 Prepare the field but inspecting self.default, self.type_ etc. 540 541 Note: this method is not idempotent (because _type_analysis is not idempotent), 542 e.g. calling it it multiple times may modify the field and configure it incorrectly. 543 """ --> 544 self._set_default_andtype() 545 if self.type.class is ForwardRef or self.type.class is DeferredType: 546 # self.type is currently a ForwardRef and there's nothing we can do now, 547 # user will need to call model.update_forward_refs() 548 return

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:568, in ModelField._set_default_andtype(self) 563 raise errors.ConfigError( 564 f'you need to set the type of field {self.name!r} when using default_factory' 565 ) 566 return --> 568 default_value = self.get_default() 570 if defaultvalue is not None and self.type is Undefined: 571 self.type_ = default_value.class

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:437, in ModelField.get_default(self) 436 def get_default(self) -> Any: --> 437 return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()

File C:\Python312\Lib\site-packages\pydantic\v1\utils.py:693, in smart_deepcopy(obj) 689 except (TypeError, ValueError, RuntimeError): 690 # do we really dare to catch ALL errors? Seems a bit risky 691 pass --> 693 return deepcopy(obj)

File C:\Python312\Lib\copy.py:162, in deepcopy(x, memo, _nil) 160 y = x 161 else: --> 162 y = _reconstruct(x, memo, *rv) 164 # If is its own copy, don't memoize. 165 if y is not x:

File C:\Python312\Lib\copy.py:259, in _reconstruct(x, memo, func, args, state, listiter, dictiter, deepcopy) 257 if state is not None: 258 if deep: --> 259 state = deepcopy(state, memo) 260 if hasattr(y, 'setstate'): 261 y.setstate(state)

File C:\Python312\Lib\copy.py:136, in deepcopy(x, memo, _nil) 134 copier = _deepcopy_dispatch.get(cls) 135 if copier is not None: --> 136 y = copier(x, memo) 137 else: 138 if issubclass(cls, type):

File C:\Python312\Lib\copy.py:221, in _deepcopy_dict(x, memo, deepcopy) 219 memo[id(x)] = y 220 for key, value in x.items(): --> 221 y[deepcopy(key, memo)] = deepcopy(value, memo) 222 return y

File C:\Python312\Lib\copy.py:151, in deepcopy(x, memo, _nil) 149 reductor = getattr(x, "__reduce_ex", None) 150 if reductor is not None: --> 151 rv = reductor(4) 152 else: 153 reductor = getattr(x, "reduce__", None)

TypeError: cannot pickle 'classmethod' object

Error Message and Stack Trace (if applicable)

No response

Description

The following code :

from langchain_groq import ChatGroq

It is giving me this error every time :

TypeError Traceback (most recent call last) Cell In[7], line 2 1 import os ----> 2 from langchain_groq import ChatGroq 3 from langchain_openai import OpenAIEmbeddings 4 from langchain.text_splitter import RecursiveCharacterTextSplitter

File C:\Python312\Lib\site-packages\langchain_groq__init.py:1 ----> 1 from langchain_groq.chat_models import ChatGroq 3 all__ = ["ChatGroq"]

File C:\Python312\Lib\site-packages\langchain_groq\chat_models.py:89 79 from pydantic import ( 80 BaseModel, 81 ConfigDict, (...) 84 model_validator, 85 ) 86 from typing_extensions import Self ---> 89 class ChatGroq(BaseChatModel): 90 """Groq Chat large language models API. 91 92 To use, you should have the (...) 298 'logprobs': None} 299 """ 301 client: Any = Field(default=None, exclude=True) #: :meta private:

File C:\Python312\Lib\site-packages\pydantic\v1\main.py:221, in ModelMetaclass.new(mcs, name, bases, namespace, **kwargs) 219 elif is_valid_field(var_name) and var_name not in annotations and can_be_changed: 220 validate_field_name(bases, var_name) --> 221 inferred = ModelField.infer( 222 name=var_name, 223 value=value, 224 annotation=annotations.get(var_name, Undefined), 225 class_validators=vg.get_validators(var_name), 226 config=config, 227 ) 228 if var_name in fields: 229 if lenientissubclass(inferred.type, fields[varname].type):

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:504, in ModelField.infer(cls, name, value, annotation, class_validators, config) 501 required = False 502 annotation = get_annotation_from_field_info(annotation, field_info, name, config.validateassignment) --> 504 return cls( 505 name=name, 506 type=annotation, 507 alias=field_info.alias, 508 class_validators=class_validators, 509 default=value, 510 default_factory=field_info.default_factory, 511 required=required, 512 model_config=config, 513 field_info=field_info, 514 )

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:434, in ModelField.init(self, name, type_, class_validators, model_config, default, default_factory, required, final, alias, field_info) 432 self.shape: int = SHAPE_SINGLETON 433 self.model_config.prepare_field(self) --> 434 self.prepare()

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:544, in ModelField.prepare(self) 537 def prepare(self) -> None: 538 """ 539 Prepare the field but inspecting self.default, self.type_ etc. 540 541 Note: this method is not idempotent (because _type_analysis is not idempotent), 542 e.g. calling it it multiple times may modify the field and configure it incorrectly. 543 """ --> 544 self._set_default_andtype() 545 if self.type.class is ForwardRef or self.type.class is DeferredType: 546 # self.type is currently a ForwardRef and there's nothing we can do now, 547 # user will need to call model.update_forward_refs() 548 return

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:568, in ModelField._set_default_andtype(self) 563 raise errors.ConfigError( 564 f'you need to set the type of field {self.name!r} when using default_factory' 565 ) 566 return --> 568 default_value = self.get_default() 570 if defaultvalue is not None and self.type is Undefined: 571 self.type_ = default_value.class

File C:\Python312\Lib\site-packages\pydantic\v1\fields.py:437, in ModelField.get_default(self) 436 def get_default(self) -> Any: --> 437 return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()

File C:\Python312\Lib\site-packages\pydantic\v1\utils.py:693, in smart_deepcopy(obj) 689 except (TypeError, ValueError, RuntimeError): 690 # do we really dare to catch ALL errors? Seems a bit risky 691 pass --> 693 return deepcopy(obj)

File C:\Python312\Lib\copy.py:162, in deepcopy(x, memo, _nil) 160 y = x 161 else: --> 162 y = _reconstruct(x, memo, *rv) 164 # If is its own copy, don't memoize. 165 if y is not x:

File C:\Python312\Lib\copy.py:259, in _reconstruct(x, memo, func, args, state, listiter, dictiter, deepcopy) 257 if state is not None: 258 if deep: --> 259 state = deepcopy(state, memo) 260 if hasattr(y, 'setstate'): 261 y.setstate(state)

File C:\Python312\Lib\copy.py:136, in deepcopy(x, memo, _nil) 134 copier = _deepcopy_dispatch.get(cls) 135 if copier is not None: --> 136 y = copier(x, memo) 137 else: 138 if issubclass(cls, type):

File C:\Python312\Lib\copy.py:221, in _deepcopy_dict(x, memo, deepcopy) 219 memo[id(x)] = y 220 for key, value in x.items(): --> 221 y[deepcopy(key, memo)] = deepcopy(value, memo) 222 return y

File C:\Python312\Lib\copy.py:151, in deepcopy(x, memo, _nil) 149 reductor = getattr(x, "__reduce_ex", None) 150 if reductor is not None: --> 151 rv = reductor(4) 152 else: 153 reductor = getattr(x, "reduce__", None)

TypeError: cannot pickle 'classmethod' object

System Info

System Information

OS: Windows OS Version: 10.0.22631 Python Version: 3.12.3 (tags/v3.12.3:f6650f9, Apr 9 2024, 14:05:25) [MSC v.1938 64 bit (AMD64)]

Package Information

langchain_core: 0.2.41 langchain: 0.2.16 langchain_community: 0.2.17 langsmith: 0.1.129 langchain_experimental: 0.0.65 langchain_groq: 0.2.0 langchain_openai: 0.1.25 langchain_pinecone: 0.1.3 langchain_text_splitters: 0.2.1

Optional packages not installed

langgraph langserve

Other Dependencies

aiohttp: 3.9.5 async-timeout: Installed. No version info available. beautifulsoup4: 4.12.3 dataclasses-json: 0.5.14 groq: 0.9.0 httpx: 0.27.0 jsonpatch: 1.33 lxml: 5.3.0 numpy: 1.26.4 openai: 1.51.0 orjson: 3.10.3 packaging: 23.2 pinecone-client: 5.0.1 pydantic: 2.7.3 PyYAML: 6.0.1 requests: 2.32.2 SQLAlchemy: 2.0.30 tenacity: 8.3.0 tiktoken: 0.7.0 typing-extensions: 4.12.1

ccurme commented 1 month ago

Hi, thanks for this.

You have langchain_groq==0.2.0 installed, which requires langchain-core >= 0.3, but you are running langchain-core==0.2.41. Re-installing langchain-groq should fix this for you, or you can also pip install --upgrade langchain-core.

Let me know if this does not solve your issue. You can find a table of what integration packages require langchain-core 0.3 here: https://python.langchain.com/docs/versions/v0_3/.

lanaramsak commented 1 month ago

I have the same issue and upgrading langchain doesn't seem to help: I have: langchain-core-0.3.11 and langchain-groq-0.2.0 but still get the error cannot pickle 'classmethod' object when running the code from langchain_groq import ChatGroq.