Closed leleZeng closed 5 months ago
To enable LangChain4j to support function calls after deploying LlaMa3 using DJL locally, you need to configure the tools that the language model can use. Here’s how you can do it:
@Tool
:import dev.langchain4j.agent.tool.Tool;
public class MyTools {
@Tool(name = "exampleTool")
public String exampleTool(String input) {
// Your tool logic here
return "Processed: " + input;
}
}
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.service.AiServices;
public class MyAiService {
public static void main(String[] args) {
ChatLanguageModel model = ... // Initialize your LlaMa3 model using DJL
MyTools tools = new MyTools();
Assistant assistant = AiServices.builder(Assistant.class)
.chatLanguageModel(model)
.tools(tools)
.build();
String response = assistant.chat("Hello");
System.out.println(response);
}
interface Assistant {
String chat(String userMessage);
}
}
In this example:
MyTools
class contains methods annotated with @Tool
.MyAiService
configures the AI service to use these tools by calling the tools
method in the AiServices
builder.Additionally, LangChain4j provides a FunctionCallHelper
class to handle function calls and tool execution requests. This class includes methods to convert tool execution requests to function calls and vice versa, ensuring that the language model can call the defined tools during execution.
To continue the conversation, mention @dosu.
Hi, you can use LocalAI, here is an example how you cna create the model: https://github.com/langchain4j/langchain4j-examples/pull/82/files Here is an example how to use tools: https://docs.langchain4j.dev/tutorials/ai-services/#tools-function-calling
I deployed LlaMa3 using DJL locally. How can Langchian4j support Function calls.