Open larscheng opened 6 months ago
class Solution {
public int minPathSum(int[][] grid) {
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int i = 1; i < grid.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < grid[0].length; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < grid.length; i++) {
for (int j = 1; j < grid[0].length; j++) {
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}
}
### 复杂度
- 时间复杂度:O(m*n)
- 空间复杂度:O(m*n)
2维dp数组需要使用额外空间 可以直接在原二维数组上直接操作,记录每个位置的最小路径和 O(m*n)/O(1)
class Solution {
public int minPathSum(int[][] grid) {
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (i==0&&j==0){
continue;
}else if (i==0){
grid[i][j] += grid[i][j-1];
} else if (j==0) {
grid[i][j] += grid[i-1][j];
}else {
grid[i][j] += Math.min(grid[i][j - 1], grid[i - 1][j]);
}
}
}
return grid[grid.length - 1][grid[0].length - 1];
}
}
64. 最小路径和