Closed SLYXDWL closed 1 year ago
Could you tell me in which file and at which line the error occurs?
The following is the error message content:
This may take a while Traceback (most recent call last): Traceback (most recent call last): File"
",line 1,in File "run_generative_heart_model.py",line 1389,in File"C:\Users\fwq44\anaconda3\envs\TF2.3\lib\multiprocessing\spawn.py", line 105, in spawn_main exitcode = _main(fd) File"C:\Users\fwq44\anaconda3\envs\TF2.3\limultiprocessing\spawn.py",line 115,in _main main() self = reduction.pickle.load(from_parent) EOFError: Ran out of input File "run_generative_heart_model.py"line 1323, in main run_dhb_shape_ae(args,dhb_shape_configs) File "run_generative_heart_model.py", line 176,in run_dhb_shape_ae train dataset=data_handlergetdatasetfrom_disk("train"n train_samples) File"D:\dwl\4DHeartModel-main\source\data.py", line 544, in get dataset_from_disk folder,=self._save_files_to_disk_timed_parallel(set_name, n_samples) File"D:\dwl\4DHeartModel-main source\data.py"line 578, in _save_files_to_disk_timed_parallel folder, dataset_params=self._save_files_to_disk_parallel(set_name,n_samples) File"D:\dwl\4DHeartModel-main\source\data.py", line 703,in _save_files_to_disk_parallel p.start() File"C:\Users\fwq44\anaconda3\envs\TF2.3\lib\multiprocessing\process.py", line 112, in start self._popen=self._Popen(self) File"C:\Users\fwq44\anaconda3\envs\TF2.3\lib\multiprocessing\context.py", line 223, in _Popen return _default_context.get_context().Process._Popen(process_obj) File"C:\Users\fwq44\anaconda3\envs\TF2.3\lib\multiprocessing\context.py", line 322, in _Popen return Popen(process_obj) File "C:\Users\fwq44\anaconda3\envsTF2.3\lib\multiprocessing\popen_spawn_win32.py", line 89,in init reduction.dump(process_obj, to_child) File "C:\Users\fwq44\anaconda3\envs\TF2.3\lib\multiprocessing\reduction.py",line 60,in dump ForkingPickler(file, protocol).dump(obj) TypeError: can't pickle vtkmodules.vtkCommonDataModel.vtkPolyData objects
Is this the whole stack-trace? It's hard to pin down where exactly the error occurred. Also, the line numbers do not exactly match the ones on github.
Which python version are you using?
I cloned the repository and ran the code. Unfortunately, I could not reproduce the error and I could run the mva. It worked for me with Python version 3.9.12.
Environment File:
name: 4dheart
channels:
- pytorch
- defaults
- conda-forge
- bioconda
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- blas=1.0=mkl
- brotlipy=0.7.0=py39hb9d737c_1004
- bzip2=1.0.8=h7f98852_4
- ca-certificates=2023.01.10=h06a4308_0
- certifi=2022.12.7=py39h06a4308_0
- cffi=1.14.6=py39he32792d_0
- charset-normalizer=2.1.0=pyhd8ed1ab_0
- cryptography=37.0.2=py39hd97740a_0
- cudatoolkit=11.6.0=hecad31d_10
- ffmpeg=4.3=hf484d3e_0
- freetype=2.10.4=h0708190_1
- gmp=6.2.1=h58526e2_0
- gnutls=3.6.13=h85f3911_1
- idna=3.3=pyhd8ed1ab_0
- intel-openmp=2021.4.0=h06a4308_3561
- jpeg=9e=h166bdaf_1
- lame=3.100=h7f98852_1001
- lcms2=2.12=hddcbb42_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.3=he6710b0_2
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libiconv=1.17=h166bdaf_0
- libllvm11=11.1.0=h9e868ea_6
- libpng=1.6.37=h21135ba_2
- libstdcxx-ng=11.2.0=h1234567_1
- libtiff=4.2.0=hf544144_3
- libwebp-base=1.2.2=h7f98852_1
- lz4-c=1.9.3=h9c3ff4c_1
- mkl=2021.4.0=h06a4308_640
- mkl-service=2.4.0=py39h7e14d7c_0
- mkl_fft=1.3.1=py39h0c7bc48_1
- mkl_random=1.2.2=py39hde0f152_0
- ncurses=6.3=h5eee18b_3
- nettle=3.6=he412f7d_0
- numba=0.56.4=py39h417a72b_0
- numpy-base=1.23.5=py39h31eccc5_0
- olefile=0.46=pyh9f0ad1d_1
- openh264=2.1.1=h780b84a_0
- openjpeg=2.4.0=hb52868f_1
- openssl=1.1.1t=h7f8727e_0
- pip=22.1.2=py39h06a4308_0
- pycparser=2.21=pyhd8ed1ab_0
- pyopenssl=22.0.0=pyhd8ed1ab_0
- pysocks=1.7.1=py39hf3d152e_5
- python=3.9.12=h12debd9_1
- python_abi=3.9=2_cp39
- pytorch=1.12.0=py3.9_cuda11.6_cudnn8.3.2_0
- pytorch-mutex=1.0=cuda
- readline=8.1.2=h7f8727e_1
- requests=2.28.1=pyhd8ed1ab_0
- six=1.16.0=pyh6c4a22f_0
- sqlite=3.38.5=hc218d9a_0
- tbb=2021.8.0=hdb19cb5_0
- tk=8.6.12=h1ccaba5_0
- torchaudio=0.12.0=py39_cu116
- torchvision=0.13.0=py39_cu116
- typing_extensions=4.3.0=pyha770c72_0
- tzdata=2022a=hda174b7_0
- urllib3=1.26.10=pyhd8ed1ab_0
- wheel=0.37.1=pyhd3eb1b0_0
- xz=5.2.5=h7f8727e_1
- zlib=1.2.12=h7f8727e_2
- zstd=1.5.0=ha95c52a_0
- pip:
- absl-py==1.2.0
- aiobotocore==2.3.4
- aiofiles==0.8.0
- aiohttp==3.8.1
- aioitertools==0.10.0
- aiosignal==1.2.0
- anyio==3.6.1
- argon2-cffi==21.3.0
- argon2-cffi-bindings==21.2.0
- astor==0.8.1
- asttokens==2.0.5
- astunparse==1.6.3
- async-timeout==4.0.2
- attrs==21.4.0
- autograd==1.5
- autograd-gamma==0.5.0
- backcall==0.2.0
- beautifulsoup4==4.11.1
- bidict==0.22.0
- bleach==5.0.1
- botocore==1.24.21
- brotli==1.0.9
- cachetools==5.2.0
- cellpose==0.1.dev292+g1db2f77
- chumpy==0.70
- click==8.1.3
- cloudpickle==2.2.0
- cycler==0.11.0
- debugpy==1.6.2
- decorator==5.1.1
- defusedxml==0.7.1
- descartes==1.1.0
- dm-tree==0.1.7
- dnspython==2.2.1
- ecdsa==0.18.0
- elasticdeform==0.4.9
- elfinder-client==2.1.55a6
- email-validator==1.2.1
- entrypoints==0.4
- executing==0.8.3
- fastapi==0.79.0
- fastjsonschema==2.16.1
- fastremap==1.13.2
- feather-format==0.4.1
- flatbuffers==2.0
- fonttools==4.34.4
- formulaic==0.5.2
- frozenlist==1.3.0
- future==0.18.3
- gast==0.4.0
- geojson==2.5.0
- google-auth==2.9.1
- google-auth-oauthlib==0.4.6
- google-pasta==0.2.0
- gputil==1.4.0
- grpcio==1.47.0
- h11==0.13.0
- h5py==3.7.0
- hupper==1.10.3
- imagecodecs==2022.2.22
- imageio==2.19.5
- imjoy==0.11.20
- imjoy-elfinder==0.1.61
- imjoy-jupyter-extension==0.3.0
- imjoy-rpc==0.5.15
- importlib-metadata==4.12.0
- inflate64==0.3.1
- interface-meta==1.3.0
- ipykernel==6.15.1
- ipython==8.4.0
- ipython-genutils==0.2.0
- ipywidgets==7.7.1
- janus==1.0.0
- jedi==0.18.1
- jinja2==3.1.2
- jmespath==1.0.1
- joblib==1.1.0
- jsonschema==4.7.2
- jupyter==1.0.0
- jupyter-client==7.3.4
- jupyter-console==6.4.4
- jupyter-core==4.11.1
- jupyterlab-pygments==0.2.2
- jupyterlab-widgets==1.1.1
- kaplanmeier==0.1.8
- keras==2.10.0
- keras-preprocessing==1.1.2
- kiwisolver==1.4.4
- libclang==14.0.1
- lifelines==0.27.4
- llvmlite==0.39.1
- lxml==4.9.1
- markdown==3.4.1
- markupsafe==2.1.1
- matplotlib==3.5.2
- matplotlib-inline==0.1.3
- mistune==0.8.4
- msgpack==1.0.4
- multidict==6.0.2
- multivolumefile==0.2.3
- natsort==8.1.0
- nbclient==0.6.6
- nbconvert==6.5.0_
- nbformat==5.4.0
- nest-asyncio==1.5.5
- networkx==2.8.5
- nibabel==4.0.2
- notebook==6.4.12
- numpy==1.22.4
- oauthlib==3.2.0
- opencv-python==4.7.0.72
- opencv-python-headless==4.6.0.66
- opt-einsum==3.3.0
- packaging==21.3
- palettable==3.3.0
- pandas==1.4.3
- pandocfilters==1.5.0
- parso==0.8.3
- pastedeploy==2.1.1
- pathvalidate==2.5.0
- pexpect==4.8.0
- pickleshare==0.7.5
- pillow==9.2.0
- plaster==1.0
- plaster-pastedeploy==0.7
- prometheus-client==0.14.1
- prompt-toolkit==3.0.30
- protobuf==3.19.4
- psbody-mesh==0.4
- psutil==5.9.1
- ptyprocess==0.7.0
- pure-eval==0.2.2
- py7zr==0.20.4
- pyarrow==11.0.0
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pybcj==1.0.1
- pycox==0.2.3
- pycryptodomex==3.17
- pydantic==1.9.1
- pydicom==2.3.0
- pygments==2.12.0
- pyopengl==3.1.6
- pyparsing==3.0.9
- pyppmd==1.0.0
- pyramid==2.0
- pyramid-jinja2==2.10
- pyrsistent==0.18.1
- python-dateutil==2.8.2
- python-dotenv==0.20.0
- python-engineio==4.0.0
- python-jose==3.3.0
- python-socketio==5.0.4
- pytz==2022.1
- pywavelets==1.3.0
- pyyaml==6.0
- pyzmq==23.2.0
- pyzstd==0.15.4
- qtconsole==5.3.1
- qtpy==2.1.0
- read-roi==1.6.0
- requests-oauthlib==1.3.1
- rsa==4.9
- scikit-image==0.19.3
- scikit-learn==1.1.1
- scikit-video==1.1.11
- scipy==1.8.1
- seaborn==0.12.2
- send2trash==1.8.0
- setuptools==67.6.1
- shapely==1.8.2
- shortuuid==1.0.9
- simpleitk==2.2.0
- sk-video==1.1.10
- sniffio==1.2.0
- soupsieve==2.3.2.post1
- spektral==1.2.0
- stack-data==0.3.0
- starlette==0.19.1
- tensorboard==2.10.1
- tensorboard-data-server==0.6.1
- tensorboard-plugin-wit==1.8.1
- tensorflow==2.10.0
- tensorflow-addons==0.18.0
- tensorflow-estimator==2.10.0
- tensorflow-io-gcs-filesystem==0.26.0
- tensorflow-probability==0.18.0
- termcolor==1.1.0
- terminado==0.15.0
- texttable==1.6.7
- threadpoolctl==3.1.0
- tifffile==2022.5.4
- tinycss2==1.1.1
- torchtuples==0.2.2
- tornado==6.2
- tqdm==4.64.0
- traitlets==5.3.0
- translationstring==1.4
- typeguard==2.13.3
- uvicorn==0.18.2
- venusian==3.0.0
- vtk==9.1.0
- waitress==2.1.2
- wcwidth==0.2.5
- webencodings==0.5.1
- webob==1.8.7
- websockets==10.3
- werkzeug==2.2.0
- widgetsnbextension==3.6.1
- wrapt==1.14.1
- wslink==1.6.6
- xvfbwrapper==0.2.9
- yarl==1.7.2
- zipp==3.8.1
- zope-deprecation==4.4.0
- zope-interface==5.4.0
prefix: /home/fabian/anaconda3/envs/4dheart_
This error seems to be related to the use of multiprocessing in win10. I have temporarily modified the parallel operation section from the code and generated one training mesh video rather than 10(n_paralell) each time to continue running the code.
When I run mva, the following error occurs :( ,
EOFError: Ran out of input TypeError: can't pickle vtkmodules.vtkCommonDataModel.vtkPolyData objects
How can I fix it? Thanks!