Closed finger-monkey closed 4 years ago
感谢。可以引用我这一篇, The following paper uses and reports the result of the baseline model. You may cite it in your paper.
@article{zheng2019joint,
title={Joint discriminative and generative learning for person re-identification},
author={Zheng, Zhedong and Yang, Xiaodong and Yu, Zhiding and Zheng, Liang and Yang, Yi and Kautz, Jan},
journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}
抱歉刚才没有说清楚,我指的是下面的这一个: [ResNet-50] | 88.84% | 71.59% | python train.py --train_all 我们提出了一个新技巧,只在这个上面做了对比实验
接近我paper里面table 3 这个?
和这个接近,不过精度会再低一点。就是您开源代码里面列表上的 https://github.com/layumi/Person_reID_baseline_pytorch Trained Model模块下的第一个。
我没有report过完全一样的,,或者你可以引用一个我早期的结果
@article{zheng2018discriminatively,
title={A discriminatively learned CNN embedding for person reidentification},
author={Zheng, Zhedong and Zheng, Liang and Yang, Yi},
journal={ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)},
volume={14},
number={1},
pages={13},
year={2018},
publisher={ACM}
}
好的,十分感谢
您好,我在您提供的基准代码上(不加任何训练技巧)做了实验,想在自己的论文里引用您的这个代码,不知道要如何引用?您的下面代码不知是在哪一片论文里提出来的? [ResNet-50] | 88.84% | 71.59% | python train.py --train_all