Open azl397985856 opened 1 year ago
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: n = len(cost) prev = curr = 0 for i in range(2, n + 1): nxt = min(curr + cost[i - 1], prev + cost[i - 2]) prev, curr = curr, nxt return curr
动态规划爬楼梯,dp[i] = Math.min(dp[i-1] , dp[i-2])
var minCostClimbingStairs = function(cost) {
const n = cost.length;
if (n<2) return cost[0];
const dp = [];
dp[0] = 0;
dp[1] = 0;// 从第一节楼梯开始,不需要花钱
for(let i = 2; i<=n;i++) {
dp[i] = Math.min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2])
}
return dp[n];
};
时间:O(n) 空间:O(n)
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int[] dp = new int[n];//dp[n]代表爬到第n个台阶支付的最小费用
dp[0] = 0;//爬到第0个台阶花费0
dp[1] = 0;//爬到第一个台阶花费0
for(int i = 2 ; i < n ; i++){
dp[i] = Math.min( dp[i - 1] + cost[i - 1] , dp[i - 2] + cost[ i - 2]);
}
//爬到最后第一个台阶或最后第二个台阶,再详细对比
return Math.min(dp[ n - 1 ] + cost[n - 1] , dp[n - 2] + cost[n - 2] );
}
}
timeO(n) space O(n)
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: lists = [0] * len(cost)
lists[0] = 0
lists[1] = 0
for i in range(2,len(cost)):
lists[i] = min(lists[i-1]+cost[i-1],lists[i-2]+cost[i-2])
return min(lists[-2]+cost[-2],lists[-1]+cost[-1])
class Solution {
public:
int minCostClimbingStairs(vector
for(int i = cost.size() - 3; i >= 0; i--)
cost[i] += min(cost[i+1], cost[i+2]);
return min(cost[0], cost[1]);
}
};
function minCostClimbingStairs(cost: number[]): number {
const n=cost.length
let dp=new Array(n+1)
dp[0]=dp[1]=0
for(let i=2;i<=n;i++){
dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])
}
return dp[n]
};
class Solution:
def minCostClimbingStairs(self, cost):
cur = 0
dp0 = cost[0]
if len(cost) >= 2:
dp1 = cost[1]
for i in range(2, len(cost)):
cur = cost[i] + min(dp0, dp1)
dp0 = dp1
dp1 = cur
return min(dp0, dp1)
var minCostClimbingStairs = function(cost) {
cost.push(0)
let arr = [cost[0],cost[1]];
for(let i=2;i<cost.length;i++){
arr[i]=Math.min(arr[i-1],arr[i-2])+cost[i];
}
return arr.pop();
};
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: n = len(cost) dp = [0] * (n + 1) for i in range(2, n + 1): dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]) return dp[n]
code
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int[] dp = new int[n + 1];
for (int i = 2; i <= n; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[n];
}
/**
dp[i] 为了 reach 第 i 层 花的成本
*/
class Solution {
public int minCostClimbingStairs(int[] cost) {
int N = cost.length;
int[] dp = new int[N + 1];
for (int i = 2; i <= N; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[N];
}
}
class Solution1 {
public int minCostClimbingStairs(int[] cost) {
int downOne = 0;
int downTwo = 0;
for (int i = 2; i < cost.length + 1; i++) {
int temp = downOne;
downOne = Math.min(downOne + cost[i - 1], downTwo + cost[i - 2]);
downTwo = temp;
}
return downOne;
}
}
DP。临界条件是minCosts[0] = 0, minCosts[1] = 0
。状态转移方程是minCosts[i] = min(minCosts[i - 2] + cost[i - 2], minCosts[i - 1] + cost[i - 1])
,即上到Step i的花费为从Step(i - 2)上两步的花费和从Step(i - 1)上一步的花费的最小值。
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
// Use an array of size n + 1 to store the minimum costs
int[] minCosts = new int[n + 1];
// Base cases: we can either start from index 0 or index 1, no costs for these
minCosts[0] = 0;
minCosts[1] = 0;
for (int i = 2; i < n + 1; i++) {
// minimum cost at step i is the smaller one of the cost climing 2 steps from step (i - 2) and the cost climing 1 step from step (i - 1)
minCosts[i] = Math.min(minCosts[i - 2] + cost[i - 2], minCosts[i - 1] + cost[i - 1]);
}
return minCosts[n];
}
}
复杂度分析
class Solution { public int minCostClimbingStairs(int[] cost) { int n = cost.length; int[] dp = new int[n];//dp[n]代表爬到第n个台阶支付的最小费用 dp[0] = 0;//爬到第0个台阶花费0 dp[1] = 0;//爬到第一个台阶花费0 for(int i = 2 ; i < n ; i++){ dp[i] = Math.min( dp[i - 1] + cost[i - 1] , dp[i - 2] + cost[ i - 2]); } //爬到最后第一个台阶或最后第二个台阶,再详细对比 return Math.min(dp[ n - 1 ] + cost[n - 1] , dp[n - 2] + cost[n - 2] ); } }
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: n = len(cost)
dp = [0] * (n+1)
# 动态转移方程,需要判断对迭代顺序
for i in range(2, n+1):
dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
return dp[n]
dp
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> ans;
ans.push_back(cost[0]);
ans.push_back(cost[1]);
for(int i=2;i<cost.size();i++){
int t=min(ans[i-1],ans[i-2])+cost[i];ans.push_back(t);
}
return min(ans[cost.size()-1],ans[cost.size()-2]);
}
};
O(N) O(N)
/**
* @param {number[]} cost
* @return {number}
*/
var minCostClimbingStairs = function(cost) {
const dp = [];
dp[0] = dp[1] = 0;
//楼梯顶为cost.length
for (let i = 2; i <= cost.length; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.length];
};```
动态规划
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
int prev = 0, curr = 0;
for (int i = 2; i <= n; i++) {
int next = min(curr + cost[i - 1], prev + cost[i - 2]);
prev = curr;
curr = next;
}
return curr;
}
};
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int[] dp = new int[n + 1];
dp[0] = cost[0];
dp[1] = cost[1];
for(int i = 2; i < n; i++){
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
}
return Math.min(dp[n - 1], dp[n - 2]);
}
}
Java Code:
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int[] dp = new int[n+1];
dp[0] = dp[1] = 0;
for(int i = 2;i <= n;i++){
dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[n];
}
}
思路
爬楼梯变形题,
var minCostClimbingStairs = function(cost) {
const n=cost.length
if ([0,1].includes(n)) return 0;
let a = 0;
let b = 0;
let temp;
for (let i = 2; i <= n; i++) {
temp = Math.min(a+cost[i-2],b+cost[i-1] ) ;
a = b;
b = temp;
}
return temp;
};
复杂度
时间:O(N)
class Solution {
public int minCostClimbingStairs(int[] cost) {
if (cost == null || cost.length <= 1) {
return 0;
}
int[] dp = new int[cost.length + 1];
dp[0] = cost[0];
dp[1] = cost[1];
for (int i = 2; i <= cost.length; i++) {
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + (i == cost.length ? 0 : cost[i]);
}
return dp[cost.length];
}
}
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int[] dp = new int[n+1];
dp[0] = dp[1] = 0;
for(int i = 2;i <= n;i++){
dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[n];
}
}
动态规划, 每一步只取前两步的最小, 答案在最后两个结果中取最小可以忽略奇偶
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> q(n);
q[0] = cost[0], q[1] = cost[1];
for (int i = 2; i < n; i++) {
q[i] = min(q[i - 1], q[i - 2]) + cost[i];
}
return min(q[n - 1], q[n - 2]);
}
};
复杂度分析
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: n = len(cost) dp = [0] * (n + 1) for i in range(2, n + 1): dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]) return dp[n]
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int size = cost.size();
vector<int> spend(size+1, 0);
int minCost;
spend[0] = spend[1] = 0;
for(int index=2; index < size+1; index++){
spend[index] = min(spend[index - 1] + cost[index - 1], spend[index - 2] + cost[index - 2]);
}
return spend[size];
}
};
class Solution:
def minCostClimbingStairs(self, cost: list[int]):
cost = cost + [0]
dp = [0]*len(cost)
dp[0], dp[1] = cost[0], cost[1]
for i in range(2, len(cost)):
dp[i] = min(dp[i-1], dp[i-2]) + (cost[i])
return dp[-1]
746.使用最小花费爬楼梯
入选理由
暂无
题目地址
https://leetcode-cn.com/problems/min-cost-climbing-stairs/
前置知识
题目描述
每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。
请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。
示例 1:
输入:cost = [10, 15, 20] 输出:15 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。 示例 2:
输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出:6 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
提示:
cost 的长度范围是 [2, 1000]。 cost[i] 将会是一个整型数据,范围为 [0, 999] 。