I am trying to use the package on a yolov3 model that I have trained myself, but I have following error. Do you know what might be the reason?
SUMMARY
========
PARAMETERS
* /darknet_ros/actions/camera_reading/name: /darknet_ros/chec...
* /darknet_ros/config_path: /home/mohammad/ca...
* /darknet_ros/image_view/enable_console_output: True
* /darknet_ros/image_view/enable_opencv: True
* /darknet_ros/image_view/wait_key_delay: 1
* /darknet_ros/publishers/bounding_boxes/latch: False
* /darknet_ros/publishers/bounding_boxes/queue_size: 1
* /darknet_ros/publishers/bounding_boxes/topic: /darknet_ros/boun...
* /darknet_ros/publishers/detection_image/latch: True
* /darknet_ros/publishers/detection_image/queue_size: 1
* /darknet_ros/publishers/detection_image/topic: /darknet_ros/dete...
* /darknet_ros/publishers/object_detector/latch: False
* /darknet_ros/publishers/object_detector/queue_size: 1
* /darknet_ros/publishers/object_detector/topic: /darknet_ros/foun...
* /darknet_ros/subscribers/camera_reading/queue_size: 1
* /darknet_ros/subscribers/camera_reading/topic: /camera/rgb/image...
* /darknet_ros/weights_path: /home/mohammad/ca...
* /darknet_ros/yolo_model/config_file/name: yolov3-spp.cfg
* /darknet_ros/yolo_model/detection_classes/names: ['person', 'bicyc...
* /darknet_ros/yolo_model/threshold/value: 0.3
* /darknet_ros/yolo_model/weight_file/name: yolov3-spp.weights
* /rosdistro: kinetic
* /rosversion: 1.12.14
NODES
/
darknet_ros (darknet_ros/darknet_ros)
ROS_MASTER_URI=http://localhost:11311
process[darknet_ros-1]: started with pid [11401]
[ INFO] [1594609317.031678020]: [YoloObjectDetector] Node started.
[ INFO] [1594609317.035157487]: [YoloObjectDetector] Xserver is running.
[ INFO] [1594609317.036212699]: [YoloObjectDetector] init().
YOLO V3
layer filters size input output
0 conv 32 3 x 3 / 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BFLOPs
1 conv 64 3 x 3 / 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BFLOPs
2 conv 32 1 x 1 / 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BFLOPs
3 conv 64 3 x 3 / 1 304 x 304 x 32 -> 304 x 304 x 64 3.407 BFLOPs
4 res 1 304 x 304 x 64 -> 304 x 304 x 64
5 conv 128 3 x 3 / 2 304 x 304 x 64 -> 152 x 152 x 128 3.407 BFLOPs
6 conv 64 1 x 1 / 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BFLOPs
7 conv 128 3 x 3 / 1 152 x 152 x 64 -> 152 x 152 x 128 3.407 BFLOPs
8 res 5 152 x 152 x 128 -> 152 x 152 x 128
9 conv 64 1 x 1 / 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BFLOPs
10 conv 128 3 x 3 / 1 152 x 152 x 64 -> 152 x 152 x 128 3.407 BFLOPs
11 res 8 152 x 152 x 128 -> 152 x 152 x 128
12 conv 258 3 x 3 / 2 152 x 152 x 128 -> 76 x 76 x 258 3.433 BFLOPs
13 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
14 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
15 res 12 76 x 76 x 258 -> 76 x 76 x 258
16 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
17 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
18 res 15 76 x 76 x 258 -> 76 x 76 x 258
19 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
20 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
21 res 18 76 x 76 x 258 -> 76 x 76 x 258
22 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
23 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
24 res 21 76 x 76 x 258 -> 76 x 76 x 258
25 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
26 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
27 res 24 76 x 76 x 258 -> 76 x 76 x 258
28 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
29 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
30 res 27 76 x 76 x 258 -> 76 x 76 x 258
31 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
32 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
33 res 30 76 x 76 x 258 -> 76 x 76 x 258
34 conv 128 1 x 1 / 1 76 x 76 x 258 -> 76 x 76 x 128 0.381 BFLOPs
35 conv 258 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 258 3.433 BFLOPs
36 res 33 76 x 76 x 258 -> 76 x 76 x 258
37 conv 512 3 x 3 / 2 76 x 76 x 258 -> 38 x 38 x 512 3.433 BFLOPs
38 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
39 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
40 res 37 38 x 38 x 512 -> 38 x 38 x 512
41 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
42 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
43 res 40 38 x 38 x 512 -> 38 x 38 x 512
44 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
45 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
46 res 43 38 x 38 x 512 -> 38 x 38 x 512
47 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
48 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
49 res 46 38 x 38 x 512 -> 38 x 38 x 512
50 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
51 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
52 res 49 38 x 38 x 512 -> 38 x 38 x 512
53 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
54 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
55 res 52 38 x 38 x 512 -> 38 x 38 x 512
56 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
57 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
58 res 55 38 x 38 x 512 -> 38 x 38 x 512
59 conv 258 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 258 0.381 BFLOPs
60 conv 512 3 x 3 / 1 38 x 38 x 258 -> 38 x 38 x 512 3.433 BFLOPs
61 res 58 38 x 38 x 512 -> 38 x 38 x 512
62 conv 1024 3 x 3 / 2 38 x 38 x 512 -> 19 x 19 x1024 3.407 BFLOPs
63 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
64 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
65 res 62 19 x 19 x1024 -> 19 x 19 x1024
66 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
67 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
68 res 65 19 x 19 x1024 -> 19 x 19 x1024
69 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
70 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
71 res 68 19 x 19 x1024 -> 19 x 19 x1024
72 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
73 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
74 res 71 19 x 19 x1024 -> 19 x 19 x1024
75 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
76 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
77 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
78 max 5 x 5 / 1 19 x 19 x 512 -> 23 x 23 x 512
79 route 77
80 max 9 x 9 / 1 19 x 19 x 512 -> 27 x 27 x 512
81 route 77
82 max 13 x 13 / 1 19 x 19 x 512 -> 31 x 31 x 512
83 route 82 80 78 77
84 Layer before convolutional layer must output image.: File exists
[darknet_ros-1] process has died [pid 11401, exit code 255, cmd /home/mohammad/catkin_ws/devel/lib/darknet_ros/darknet_ros camera/rgb/image_raw:=/camera/rgb/image_raw __name:=darknet_ros __log:=/home/mohammad/.ros/log/29e731cc-c4b3-11ea-86fe-5c80b69e8dce/darknet_ros-1.log].
log file: /home/mohammad/.ros/log/29e731cc-c4b3-11ea-86fe-5c80b69e8dce/darknet_ros-1*.log
all processes on machine have died, roslaunch will exit
shutting down processing monitor...
... shutting down processing monitor complete
done
Hello
I am trying to use the package on a yolov3 model that I have trained myself, but I have following error. Do you know what might be the reason?
Thank You