Closed Delta0406 closed 2 years ago
尴尬,我也是感觉差别有点大
我也是训练有这个问题,而且效果还不怎么好,请问你们解决了吗?是不是那里没有修改正确?
我也是训练有这个问题,而且效果还不怎么好,请问你们解决了吗?是不是那里没有修改正确?
我感觉他代码有问题。。我吧CDD放上去直接RUN的
我感觉他代码有问题。。我吧CDD放上去直接RUN的
please refer to readme file. The main reason might be that you did not revise the label from the original label value 0-255 to the network value 0-1.
我感觉他代码有问题。。我吧CDD放上去直接RUN的
please refer to readme file. The main reason might be that you did not revise the label from the original label value 0-255 to the network value 0-1.
Hello, may I ask how to convert the pixel value to 0 to 1. Is it to directly divide the pixel value by 255, or first turn it into a grayscale format, and then divide by 255.Thank you very much and look forward to your reply.
我感觉他代码有问题。。我吧CDD放上去直接RUN的
please refer to readme file. The main reason might be that you did not revise the label from the original label value 0-255 to the network value 0-1.
你好,请问怎么把原始label的值从0-255转换成0-1,谢谢!
情况就是这么个情况,具体咋改也不知道
Epoch [27/1120] Loss: -752.6592 Mask_Loss_conv5: -251.0686 Mask_Loss_fc: -250.4772 Mask_Loss_embedding: -251.1134 Epoch [27/1140] Loss: -673.4584 Mask_Loss_conv5: -224.4770 Mask_Loss_fc: -224.6068 Mask_Loss_embedding: -224.3746 Epoch [27/1160] Loss: -148.1745 Mask_Loss_conv5: -49.3769 Mask_Loss_fc: -49.4018 Mask_Loss_embedding: -49.3958 Epoch [27/1180] Loss: -71.9143 Mask_Loss_conv5: -23.9587 Mask_Loss_fc: -24.0065 Mask_Loss_embedding: -23.9490 Epoch [27/1200] Loss: -362.3986 Mask_Loss_conv5: -120.7738 Mask_Loss_fc: -120.8340 Mask_Loss_embedding: -120.7908 Epoch [27/1220] Loss: -190.4212 Mask_Loss_conv5: -63.4736 Mask_Loss_fc: -63.4761 Mask_Loss_embedding: -63.4716 Epoch [27/1240] Loss: -55.3082 Mask_Loss_conv5: -18.4365 Mask_Loss_fc: -18.4353 Mask_Loss_embedding: -18.4363 0.058823529411764705 0.0030097260885289996 Epoch [28/0] Loss: -342.8940 Mask_Loss_conv5: -114.2997 Mask_Loss_fc: -114.3042 Mask_Loss_embedding: -114.2901
兄弟解决了吗
我感觉他代码有问题。。我吧CDD放上去直接RUN的
please refer to readme file. The main reason might be that you did not revise the label from the original label value 0-255 to the network value 0-1.
你好,原始CDD数据集label的值是在0到255之间的,请问怎么将这个灰度图转换成为二值图,介于0-255之间的数要怎么处理呢?
我也是训练有这个问题,而且效果还不怎么好,请问你们解决了吗?是不是那里没有修改正确?
你好,我想问一下,这数据集的标签不就是二值图像,就是0和1吗,怎么要转换
情况就是这么个情况,具体咋改也不知道
epoch[27/1120]Loss:-752.6592 Mask Loss con V5:-251.0686 Mask Loss fc:-250.4772 Mask Loss embedding:-251.1134epoch[27/1140]Loss:-673.4584 Mask Loss con V5:-224.4770 Mask Loss fc:-224.6068 Mask Loss embedding:-224.3746epoch[27/1160]Loss:-148.1745 Mask Loss con V5:-49.3769 Mask Loss fc:-49.4018 Mask Loss embedding:-49.3958epoch[27/1180]Loss:-71.9143 Mask Loss con V5:-23.9587 Mask Loss fc:-24.0065 Mask Loss embedding:-23.9490epoch[27/1200]Loss:-362.3986 Mask Loss con V5:-120.7738 Mask Loss fc:-120.8340 Mask Loss embedding:-120.7908epoch[27/1220]Loss:-190.4212 Mask Loss con V5:-63.4736 Mask Loss fc:-63.4761 Mask Loss embedding:-63.4716epoch[27/1240]Loss:-55.3082 Mask Loss con V5:-18.4365 Mask Loss fc:-18.4353 Mask Loss embedding:-18.4363 0.058823529411764705 0.0030097260885289996epoch[28/0]Loss:-342.8940 Mask Loss con V5:-114.2997 Mask Loss fc:-114.3042 Mask Loss embedding:-114.2901
你好,我也出现了这个情况,可以添加你联系方式探讨一下这个问题吗 我qq:1994462220 祝你好运
我是用的BCD跑的,这命令行看的我强迫症都犯了,epoch开始那是什么鬼?还有怎么还有负数的loss???
我也是训练的有这个问题,请问你解决了没有