lemon24 / reader

A Python feed reader library.
https://reader.readthedocs.io
BSD 3-Clause "New" or "Revised" License
456 stars 38 forks source link

Deal with deprecated TIMESTAMP sqlite3 converters in Python 3.12 #321

Closed lemon24 closed 1 year ago

lemon24 commented 1 year ago

https://github.com/python/cpython/issues/90016 https://docs.python.org/3.12/library/sqlite3.html#default-adapters-and-converters-deprecated

The default adapters and converters are deprecated as of Python 3.12. Instead, use the Adapter and converter recipes and tailor them to your needs.

...but, the converter infra is global, so that can't work for reader (as a library, it should not change global stuff).


One solution that might work is to make custom connection/cursor subclasses that take care of the conversion (we'd need to turn detect_types off). For reference, reader uses TIMESTAMP for dates, which is stored as 2016-11-05 00:00:00 or 2023-08-25 03:00:42.262181.

Update: ...except doing it in pure-Python is impossible, because detect_types=PARSE_DECLTYPES uses sqlite3_column_decltype, which is not exposed in the Python sqlite3 API.

lemon24 commented 1 year ago

I looked a bit into using cattrs for this.

Using only cattrs is somewhat involved, because:

Arguably, it may be better to use cattrs just for (un)structuring and basic conversions (datetime, tuples, ...), and handle (un)flattening and JSON string conversions separately.

For reference, here's code for various approaches of (un)structuring things: ```python from __future__ import annotations from dataclasses import dataclass, fields from datetime import datetime from collections.abc import Sequence from functools import partial from collections import ChainMap import typing import json import cattrs from cattrs import override from cattrs.gen import make_dict_structure_fn, make_dict_unstructure_fn @dataclass(frozen=True) class ExceptionInfo: type_name: str value_str: str @dataclass(frozen=True) class Feed: url: str updated: datetime | None = None last_exception: ExceptionInfo | None = None @dataclass(frozen=True) class Content: value: str type: str | None = None @dataclass(frozen=True) class Entry: id: str updated: datetime | None = None content: Sequence[Content] = () feed: Feed = None feed_input = { 'url': 'http://example.com/index.xml', 'updated': '2022-01-01 00:00:00', 'last_exception': json.dumps(ExceptionInfo('Error', 'message').__dict__), } entry_input = { 'feeds.url': 'http://example.com/index.xml', 'feeds.updated': '2022-01-01 00:00:00', 'feeds.last_exception': json.dumps(ExceptionInfo('Error', 'message').__dict__), 'entries.id': '123', 'entries.updated': '2022-01-01 12:34:56.789000', 'entries.content': json.dumps([Content('value').__dict__]), } converter = cattrs.Converter() converter.register_structure_hook(datetime, lambda v, _: datetime.fromisoformat(v)) converter.register_unstructure_hook(datetime, lambda v: v.isoformat(sep=' ')) """ feed = converter.structure(feed_input, Feed) print(feed) print(converter.unstructure(feed)) print() def unflatten_inplace(d, prefix, json_keys=frozenset(), nested_keys={}): keys = [k for k in d if k.startswith(prefix)] for k in keys: d[k.removeprefix(prefix)] = d.pop(k) for k in json_keys: d[k] = json.loads(d[k]) for k, p in nested_keys.items(): keys = [k for k in d if k.startswith(p)] d[k] = {k.removeprefix(p): d.pop(k) for k in keys} unflatten_inplace(entry_input, 'entries.', {'content'}, {'feed': 'feeds.'}) entry = converter.structure(entry_input, Entry) print(entry) print(converter.unstructure(entry)) print() """ def structure_json(v, cl, wrap=None): rv = cattrs.structure(json.loads(v), cl) if wrap: rv = wrap(rv) return rv def unstructure_json(v): return json.dumps(cattrs.unstructure(v)) converter.register_structure_hook(ExceptionInfo, structure_json) converter.register_unstructure_hook(ExceptionInfo, unstructure_json) feed = converter.structure(feed_input, Feed) print(feed) print(converter.unstructure(feed)) print() def make_structure_fn(cl): overrides = {} hints = typing.get_type_hints(cl) for f in fields(cl): kwargs = {} if typing.get_origin(hints[f.name]) is Sequence: overrides[f.name] = override(struct_hook=partial(structure_json, wrap=tuple)) return make_dict_structure_fn(cl, converter, **overrides) def make_unstructure_fn(cl): overrides = {} hints = typing.get_type_hints(cl) for f in fields(cl): kwargs = {} if typing.get_origin(hints[f.name]) is Sequence: overrides[f.name] = override(unstruct_hook=unstructure_json) return make_dict_unstructure_fn(cl, converter, **overrides) converter.register_structure_hook(Entry, make_structure_fn(Entry)) converter.register_unstructure_hook(Entry, make_unstructure_fn(Entry)) class Stripper: def __init__(self, data, prefix): self.data = data self.prefix = prefix def __getitem__(self, name): return self.data[self.prefix + name] def __iter__(self): return (k.removeprefix(self.prefix) for k in self.data if k.startswith(self.prefix)) entry_input = ChainMap( {'feed': Stripper(entry_input, 'feeds.')}, Stripper(entry_input, 'entries.'), ) entry = converter.structure(entry_input, Entry) print(entry) print(converter.unstructure(entry)) print() ```
lemon24 commented 1 year ago

The code below contains a few different ways of manipulating the output of a query to a form that's accepted by cattrs structure(); all of them precompute the list of changes ahead of time to some extent, based on the expected type.

Conclusions (preliminary):

The code (the good stuff starts around line 70). ```python from __future__ import annotations from dataclasses import dataclass, fields from datetime import datetime from collections.abc import Sequence from functools import partial, lru_cache from collections import ChainMap import typing, types import json import cattrs from cattrs import override from cattrs.gen import make_dict_structure_fn, make_dict_unstructure_fn from pprint import pprint pprint = partial(pprint, sort_dicts=False) @dataclass(frozen=True) class ExceptionInfo: type_name: str value_str: str @dataclass(frozen=True) class Feed: url: str updated: typing.Union[datetime, None] = None last_exception: ExceptionInfo | None = None @dataclass(frozen=True) class Content: value: str type: str | None = None @dataclass(frozen=True) class Entry: id: str updated: datetime | None = None content: Sequence[Content] = () feed: Feed = None a: str = '' b: str = '' c: str = '' d: str = '' e: str = '' f: str = '' feed_input = { 'url': 'http://example.com/index.xml', 'updated': '2022-01-01 00:00:00', 'last_exception': None, 'last_exception': json.dumps(ExceptionInfo('Error', 'message').__dict__), } entry_input = { 'feeds.url': 'http://example.com/index.xml', 'feeds.updated': '2022-01-01 00:00:00', 'feeds.last_exception': json.dumps(ExceptionInfo('Error', 'message').__dict__), 'entries.id': '123', 'entries.updated': '2022-01-01 12:34:56.789000', 'entries.content': json.dumps([Content('value').__dict__]), 'entries.a': 'a', 'entries.b': 'a', 'entries.c': 'a', 'entries.d': 'a', 'entries.e': 'a', 'entries.f': 'a', } converter = cattrs.Converter() converter.register_structure_hook(datetime, lambda v, _: datetime.fromisoformat(v)) converter.register_unstructure_hook(datetime, lambda v: v.isoformat(sep=' ')) # stuff that's precomputed can be derived once per type with introspection #### approach one: precompute as much as possible def _structure_static(value, cls, *, _composite_keys=(), _rename_keys={}, _nested_keys={}): m = ChainMap({}, value) for k in _composite_keys: v = m[k] if v is not None: m[k] = json.loads(v) for dst, src in _rename_keys.items(): m[dst] = m[src] for key, renames in _nested_keys.items(): n = m[key] = {} for dst, src in renames.items(): n[dst] = m[src] return converter.structure(m, cls) STATIC_KWARGS = { Feed: dict( _composite_keys=['last_exception'], ), Entry: dict( _composite_keys=[ 'entries.content', 'feeds.last_exception', ], _rename_keys={ 'id': 'entries.id', 'updated': 'entries.updated', 'content': 'entries.content', } | {k: f'entries.{k}' for k in 'abcdef'}, _nested_keys={'feed': { 'url': 'feeds.url', 'updated': 'feeds.updated', 'last_exception': 'feeds.last_exception', }}, ), } def structure_static(value, cls): return _structure_static(value, cls, **STATIC_KWARGS[cls]) # In [4]: %timeit structure(feed_input, Feed) # 11.1 µs ± 50 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each) # In [3]: %timeit structure(entry_input, Entry) # 35.5 µs ± 653 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each) #### approach two: precompute less, rely on a wrapper to remove prefixes class Stripper: def __init__(self, value, prefix='', composite=set()): self.value = value self.prefix = prefix self.composite = composite def __getitem__(self, name): rv = self.value[self.prefix + name] if name in self.composite: rv = json.loads(rv) return rv def __iter__(self): return (k.removeprefix(self.prefix) for k in self.value if k.startswith(self.prefix)) def _structure_dynamic(value, cls, *, _prefix='', _composite_keys=set(), _nested_keys=()): m = ChainMap(value) if _prefix or _composite_keys: m.maps.insert(0, Stripper(value, _prefix, composite=_composite_keys)) if _nested_keys: n = {} m.maps.insert(0, n) for k, prefix, composite in _nested_keys: n[k] = Stripper(m, prefix, composite) return converter.structure(m, cls) DYNAMIC_KWARGS = { Feed: dict( _composite_keys={'last_exception'}, ), Entry: dict( _prefix='entries.', _composite_keys={'content'}, _nested_keys=[['feed', 'feeds.', ['last_exception']]], ), } def structure_dynamic(value, cls): return _structure_dynamic(value, cls, **DYNAMIC_KWARGS[cls]) # In [6]: %timeit structure(feed_input, Feed) # 13 µs ± 123 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each) # In [4]: %timeit structure(entry_input, Entry) # 78 µs ± 260 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each) #### approach three: unroll all the loops in generated code def _codegen(cls, _composite_keys=(), _rename_keys={}, _nested_keys={}): lines = [f"def fn(m, loads):"] for k in _composite_keys: lines.extend([ f" v = m[{k!r}]", f" if v is not None:", f" m[{k!r}] = loads(v)", ]) for dst, src in _rename_keys.items(): lines.append(f" m[{dst!r}] = m[{src!r}]") for key, renames in _nested_keys.items(): lines.append(f" m[{key!r}] = {{") for dst, src in renames.items(): lines.append(f" {dst!r}: m[{src!r}],") lines.append(" }") code = '\n'.join(lines) ns = {} exec(code, ns) fn = ns['fn'] fn.__name__ = f"prepare__{cls.__qualname__.replace('.', '__')}" return fn CODEGEN_FUNCS = {cls: _codegen(cls, **kwargs) for cls, kwargs in STATIC_KWARGS.items()} def structure_codegen(value, cls): m = ChainMap({}, value) CODEGEN_FUNCS[cls](m, json.loads) return converter.structure(m, cls) # In [1]: %timeit structure(feed_input, Feed) # 10.3 µs ± 18.1 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each) # In [3]: %timeit structure(entry_input, Entry) # 34 µs ± 620 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each) # structure = structure_static # # feed = structure(feed_input, Feed) # pprint(feed) # entry = structure(entry_input, Entry) # pprint(entry) #### baseline: cattrs only feed_input = dict(feed_input) CODEGEN_FUNCS[Feed](feed_input, json.loads) entry_input = dict(entry_input) CODEGEN_FUNCS[Entry](entry_input, json.loads) # structure = converter.structure # # feed = structure(feed_input, Feed) # pprint(feed) # entry = structure(entry_input, Entry) # pprint(entry) # In [2]: %timeit structure(feed_input, Feed) # 3.65 µs ± 42 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each) # In [3]: %timeit structure(entry_input, Entry) # 10.4 µs ± 35.7 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each) #### unused/unfinished introspection code BASIC_TYPES = (str, datetime) def resolve_optional(hint): origin = typing.get_origin(hint) if origin not in (types.UnionType, typing.Union): return hint args = [a for a in typing.get_args(hint) if a is not type(None)] if len(args) != 1: raise ValueError(f"expected T|None union, got: {hint}") return args[0] def get_composite_keys(cls): rv = [] hints = typing.get_type_hints(cls) for f in fields(cls): hint = resolve_optional(hints[f.name]) if issubclass(hint, BASIC_TYPES): continue rv.append(f.name) return frozenset(rv) ```
Update: Complete db -> objects conversion code. ```python from __future__ import annotations from dataclasses import dataclass from datetime import datetime from collections.abc import Sequence from collections import ChainMap import typing, types import json import cattrs from pprint import pprint import typing import types import dataclasses import functools @dataclass(frozen=True) class ExceptionInfo: type_name: str value_str: str @dataclass(frozen=True) class Feed: url: str updated: datetime | None = None last_exception: ExceptionInfo | None = None @dataclass(frozen=True) class Content: value: str type: str | None = None @dataclass(frozen=True) class Entry: id: str updated: datetime | None = None content: Sequence[Content] = () feed: Feed = None feed_input = { 'url': 'http://example.com/index.xml', 'updated': '2022-01-01 00:00:00', 'last_exception': None, 'last_exception': json.dumps(ExceptionInfo('Error', 'message').__dict__), } entry_input = { 'feeds.url': 'http://example.com/index.xml', 'feeds.updated': '2022-01-01 00:00:00', 'feeds.last_exception': json.dumps(ExceptionInfo('Error', 'message').__dict__), 'entries.id': '123', 'entries.updated': '2022-01-01 12:34:56.789000', 'entries.content': json.dumps([Content('value').__dict__]), } converter = cattrs.Converter() converter.register_structure_hook(datetime, lambda v, _: datetime.fromisoformat(v)) converter.register_unstructure_hook(datetime, lambda v: v.isoformat(sep=' ')) def resolve_optional(hint): origin = typing.get_origin(hint) if origin not in (types.UnionType, typing.Union): return hint args = [a for a in typing.get_args(hint) if a is not type(None)] if len(args) != 1: raise ValueError(f"expected T|None union, got: {hint}") return args[0] BASIC_TYPES = (str, datetime) def as_(factory): def decorator(fn): @functools.wraps(fn) def wrapper(*args, **kwargs): return factory(fn(*args, **kwargs)) return wrapper return decorator @as_(list) def composite_keys(cls, prefix='', nested={}): hints = typing.get_type_hints(cls) for field in dataclasses.fields(cls): name = field.name hint = resolve_optional(hints[name]) if name in nested: yield from composite_keys(hint, nested[name]) elif not issubclass(hint, BASIC_TYPES): yield prefix + name @as_(dict) def rename_keys(cls, prefix='', nested={}): if not prefix: return for field in dataclasses.fields(cls): name = field.name if name in nested: continue yield name, prefix + name @as_(dict) def nested_keys(cls, nested={}): fields = {f.name for f in dataclasses.fields(cls)} hints = typing.get_type_hints(cls) for name, prefix in nested.items(): if name not in fields: raise ValueError(f"{name!r} is not a field of {cls}") hint = resolve_optional(hints[name]) if not (dataclasses.is_dataclass(hint) and isinstance(hint, type)): raise ValueError(f"{name!r} field must be a dataclass") yield name, rename_keys(hint, prefix) def wangjangle_static(m, cls, composite_keys=(), rename_keys={}, nested_keys={}): for k in composite_keys: v = m[k] if v is not None: m[k] = json.loads(v) for dst, src in rename_keys.items(): m[dst] = m[src] for key, renames in nested_keys.items(): n = m[key] = {} for dst, src in renames.items(): n[dst] = m[src] @functools.cache def make_wangjangle(cls, prefix, **nested): return functools.partial( wangjangle_static, cls=cls, composite_keys=composite_keys(cls, prefix, nested), rename_keys=rename_keys(cls, prefix, nested), nested_keys=nested_keys(cls, nested), ) def structure(value, cls, prefix='', **nested): m = ChainMap({}, value) make_wangjangle(cls, prefix, **nested)(m) return converter.structure(m, cls) # pprint = functools.partial(pprint, sort_dicts=False) # # feed = structure(feed_input, Feed) # pprint(feed) # entry = structure(entry_input, Entry, 'entries.', feed='feeds.') # pprint(entry) if __name__ == '__main__': import sys for _ in range(int(sys.argv[1])): feed = structure(feed_input, Feed) entry = structure(entry_input, Entry, 'entries.', feed='feeds.') ```
lemon24 commented 1 year ago

Following some sage advice from @andreivasiliu, I think it's probably best to keep the handmade row–object conversion functions; in his words:

Having your conversions manually laid out like that means that a reader (the fleshy kind) will always know all forms the data passes through. And knowing the shape of data is generally the most important thing in code (it's why typing helps so much). If you know what the input and output looks like, you can easily infer the conversion function. If all you can see is an abstract conversion function, then you have no idea what kinds of inputs it works on, and what kinds of outputs it's supposed to give out.

(...and it's not that many conversions anyway, I got carried away with cattrs for a bit there :)


On a semi-related note, this is probably a good opportunity to get rid of fix_datetime_tzinfo() and require Storage to return timezone-aware datetimes (UTC only); better now before #325.