Out:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-15-5070dde8118a> in <module>()
1 dist = SparkCountVectorizer()
----> 2 result_dist = dist.fit_transform(X_rdd) # SparseRDD
/usr/local/lib/python3.5/site-packages/splearn/feature_extraction/text.py in fit_transform(self, Z)
291 # create vocabulary
292 X = A[:, 'X'] if isinstance(A, DictRDD) else A
--> 293 self.vocabulary_ = self._init_vocab(X)
294
295 # transform according to vocabulary
/usr/local/lib/python3.5/site-packages/splearn/feature_extraction/text.py in _init_vocab(self, analyzed_docs)
152 accum = analyzed_docs._rdd.context.accumulator(set(), SetAccum())
153 analyzed_docs.foreach(
--> 154 lambda x: accum.add(set(chain.from_iterable(x))))
155 vocabulary = {t: i for i, t in enumerate(accum.value)}
156 else:
/usr/local/lib/python3.5/site-packages/splearn/rdd.py in bypass(*args, **kwargs)
172 """
173 def bypass(*args, **kwargs):
--> 174 result = getattr(self._rdd, attr)(*args, **kwargs)
175 if isinstance(result, RDD):
176 if result is self._rdd:
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/pyspark/rdd.py in foreach(self, f)
745 f(x)
746 return iter([])
--> 747 self.mapPartitions(processPartition).count() # Force evaluation
748
749 def foreachPartition(self, f):
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/pyspark/rdd.py in count(self)
1002 3
1003 """
-> 1004 return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
1005
1006 def stats(self):
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/pyspark/rdd.py in sum(self)
993 6.0
994 """
--> 995 return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
996
997 def count(self):
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/pyspark/rdd.py in fold(self, zeroValue, op)
867 # zeroValue provided to each partition is unique from the one provided
868 # to the final reduce call
--> 869 vals = self.mapPartitions(func).collect()
870 return reduce(op, vals, zeroValue)
871
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/pyspark/rdd.py in collect(self)
769 """
770 with SCCallSiteSync(self.context) as css:
--> 771 port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
772 return list(_load_from_socket(port, self._jrdd_deserializer))
773
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 8.0 failed 1 times, most recent failure: Lost task 3.0 in stage 8.0 (TID 35, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
process()
File "/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "/usr/local/lib/python3.5/site-packages/splearn/feature_extraction/text.py", line 289, in <lambda>
A = Z.transform(lambda X: list(map(analyze, X)), column='X').persist()
File "/usr/local/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 238, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "/usr/local/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 204, in <lambda>
return lambda x: strip_accents(x.lower())
AttributeError: 'numpy.ndarray' object has no attribute 'lower'
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.collect(RDD.scala:926)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:405)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
process()
File "/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/Cellar/apache-spark/1.6.1/libexec/python/lib/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "/usr/local/lib/python3.5/site-packages/splearn/feature_extraction/text.py", line 289, in <lambda>
A = Z.transform(lambda X: list(map(analyze, X)), column='X').persist()
File "/usr/local/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 238, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "/usr/local/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 204, in <lambda>
return lambda x: strip_accents(x.lower())
AttributeError: 'numpy.ndarray' object has no attribute 'lower'
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
Any idea of how to correctly vectorize X with sparkit-learn and why this Py4JJavaError occurred?.
Instead of:
X = [df['text'].values]
Use:
X = df['text'].values
In your version, X is a list of numpy arrays so simply removing the brackets should solve your problem.
From the documentation examples, I tried to vectorize a list of texts with
SparkCountVectorizer
:However, I got this exception:
Any idea of how to correctly vectorize
X
with sparkit-learn and why this Py4JJavaError occurred?.