lhoyer / MIC

[CVPR23] Official Implementation of MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
268 stars 40 forks source link

Classification problem #78

Open KirinHao opened 7 months ago

KirinHao commented 7 months ago

I have some problems with the data set used in the classification section. In the classification experiment, is only the training set and validation set of the VisDA-2017 data set used? Is the test set directly VisDA-2017 validation set? I know little about this dataset and look forward to your reply. Thank you very much!

    # in cls.vision.datasets.util.py
    elif dataset_name in datasets.__dict__:
        # load datasets from common.vision.datasets
        dataset = datasets.__dict__[dataset_name]

        def concat_dataset(tasks, **kwargs):
            return ConcatDataset([dataset(task=task, **kwargs) for task in tasks])

        train_source_dataset = concat_dataset(root=root, tasks=source, download=True, transform=train_source_transform)
        train_target_dataset = concat_dataset(root=root, tasks=target, download=True, transform=train_target_transform)
        val_dataset = concat_dataset(root=root, tasks=target, download=True, transform=val_transform)
        if dataset_name == 'DomainNet':
            test_dataset = concat_dataset(root=root, tasks=target, split='test', download=True, transform=val_transform)
        else:
            test_dataset = val_dataset  # about here
KirinHao commented 7 months ago

In addition, my questions include that this is also used in data set files (only training sets and validation sets are used). Look forward to your reply very much, thank you!

    # in cls.vision.datasets.visda2017.py
    download_list = [
        ("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/c107de37b8094c5398dc/?dl=1"),
        ("train", "train.tgz", "https://cloud.tsinghua.edu.cn/f/c5f3ce59139144ec8221/?dl=1"),
        ("validation", "validation.tgz", "https://cloud.tsinghua.edu.cn/f/da70e4b1cf514ecea562/?dl=1")
    ]
    image_list = {
        "Synthetic": "image_list/train.txt",
        "Real": "image_list/validation.txt"
    }
    CLASSES = ['aeroplane', 'bicycle', 'bus', 'car', 'horse', 'knife',
               'motorcycle', 'person', 'plant', 'skateboard', 'train', 'truck']