Closed wsadaaa closed 4 weeks ago
可能原因 ollama 检测到的显卡有占用,因此给你自动分配了显存设置。有其他应用在占用显卡。通常重启一般就可以解决或者手动设置 num_thread ,num_gpu 来测试 参考 https://github.com/ollama/ollama/issues/2496 ;https://github.com/ollama/ollama/issues/6008,
折腾一天还是没解决,我有点怀疑不知道是不是open webui或者AnythingLLM某个设置的影响,但我把它们都还原到默认设置甚至都卸载了还是不行。目前运行llama 3.2 3b是全部用显卡显存,速度正常。而llama 3.1 8,qwen 2.5 7.6b这样大小的模型就会占用大量内存,而显卡显存只用到了一半,导致速度很慢。 下面是ollama的log: 2024/10/21 07:25:09 routes.go:1158: INFO server config env="map[CUDA_VISIBLE_DEVICES: GPU_DEVICE_ORDINAL: HIP_VISIBLE_DEVICES: HSA_OVERRIDE_GFX_VERSION: HTTPS_PROXY: HTTP_PROXY: NO_PROXY: OLLAMA_DEBUG:false OLLAMA_FLASH_ATTENTION:false OLLAMA_GPU_OVERHEAD:0 OLLAMA_HOST:http://127.0.0.1:11434 OLLAMA_INTEL_GPU:false OLLAMA_KEEP_ALIVE:5m0s OLLAMA_LLM_LIBRARY: OLLAMA_LOAD_TIMEOUT:5m0s OLLAMA_MAX_LOADED_MODELS:0 OLLAMA_MAX_QUEUE:512 OLLAMA_MODELS:D:\AI\ollama models OLLAMA_MULTIUSER_CACHE:false OLLAMA_NOHISTORY:false OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:0 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost: https://localhost: http://127.0.0.1 https://127.0.0.1 http://127.0.0.1: https://127.0.0.1: http://0.0.0.0 https://0.0.0.0 http://0.0.0.0: https://0.0.0.0: app:// file:// tauri://*] OLLAMA_SCHED_SPREAD:false OLLAMA_TMPDIR: ROCR_VISIBLE_DEVICES:]" time=2024-10-21T07:25:09.238+08:00 level=INFO source=images.go:754 msg="total blobs: 33" time=2024-10-21T07:25:09.258+08:00 level=INFO source=images.go:761 msg="total unused blobs removed: 0" time=2024-10-21T07:25:09.261+08:00 level=INFO source=routes.go:1205 msg="Listening on 127.0.0.1:11434 (version 0.3.13-1-geec4cd6)" time=2024-10-21T07:25:09.262+08:00 level=INFO source=common.go:49 msg="Dynamic LLM libraries" runners="[cpu cpu_avx cpu_avx2 cuda_v11 cuda_v12 rocm_v6.1]" time=2024-10-21T07:25:09.262+08:00 level=INFO source=gpu.go:199 msg="looking for compatible GPUs" time=2024-10-21T07:25:09.519+08:00 level=INFO source=gpu.go:252 msg="error looking up nvidia GPU memory" error="cuda driver library failed to get device context 801" time=2024-10-21T07:25:10.018+08:00 level=INFO source=types.go:107 msg="inference compute" id=0 library=rocm variant="" compute=gfx1032 driver=6.2 name="AMD Radeon RX 6600" total="8.0 GiB" available="7.8 GiB" [GIN] 2024/10/21 - 07:25:10 | 200 | 34.8509ms | 127.0.0.1 | GET "/api/tags" [GIN] 2024/10/21 - 07:25:11 | 200 | 1.5668ms | 127.0.0.1 | GET "/api/tags" [GIN] 2024/10/21 - 07:25:11 | 200 | 0s | 127.0.0.1 | GET "/api/version" time=2024-10-21T07:25:23.219+08:00 level=INFO source=sched.go:185 msg="one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency" time=2024-10-21T07:25:23.246+08:00 level=INFO source=sched.go:714 msg="new model will fit in available VRAM in single GPU, loading" model="D:\AI\ollama models\blobs\sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff" gpu=0 parallel=4 available=8278704128 required="3.7 GiB" time=2024-10-21T07:25:23.246+08:00 level=INFO source=server.go:108 msg="system memory" total="31.9 GiB" free="15.3 GiB" free_swap="14.3 GiB" time=2024-10-21T07:25:23.246+08:00 level=INFO source=memory.go:326 msg="offload to rocm" layers.requested=-1 layers.model=29 layers.offload=29 layers.split="" memory.available="[7.7 GiB]" memory.gpu_overhead="0 B" memory.required.full="3.7 GiB" memory.required.partial="3.7 GiB" memory.required.kv="896.0 MiB" memory.required.allocations="[3.7 GiB]" memory.weights.total="2.4 GiB" memory.weights.repeating="2.1 GiB" memory.weights.nonrepeating="308.2 MiB" memory.graph.full="424.0 MiB" memory.graph.partial="570.7 MiB" time=2024-10-21T07:25:23.258+08:00 level=INFO source=server.go:399 msg="starting llama server" cmd="C:\Users\CP\AppData\Local\Programs\Ollama\lib\ollama\runners\rocm_v6.1\ollama_llama_server.exe --model D:\AI\ollama models\blobs\sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff --ctx-size 8192 --batch-size 512 --embedding --log-disable --n-gpu-layers 29 --parallel 4 --port 8675" time=2024-10-21T07:25:23.277+08:00 level=INFO source=sched.go:449 msg="loaded runners" count=1 time=2024-10-21T07:25:23.277+08:00 level=INFO source=server.go:598 msg="waiting for llama runner to start responding" time=2024-10-21T07:25:23.277+08:00 level=INFO source=server.go:632 msg="waiting for server to become available" status="llm server error" INFO [wmain] starting c++ runner | tid="7716" timestamp=1729466723 INFO [wmain] build info | build=3670 commit="88c682cf" tid="7716" timestamp=1729466723 INFO [wmain] system info | n_threads=8 n_threads_batch=8 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | " tid="7716" timestamp=1729466723 total_threads=16 INFO [wmain] HTTP server listening | hostname="127.0.0.1" n_threads_http="15" port="8675" tid="7716" timestamp=1729466723 llama_model_loader: loaded meta data with 30 key-value pairs and 255 tensors from D:\AI\ollama models\blobs\sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Llama 3.2 3B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Llama-3.2 llama_model_loader: - kv 5: general.size_label str = 3B llama_model_loader: - kv 6: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam... llama_model_loader: - kv 7: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ... llama_model_loader: - kv 8: llama.block_count u32 = 28 llama_model_loader: - kv 9: llama.context_length u32 = 131072 llama_model_loader: - kv 10: llama.embedding_length u32 = 3072 llama_model_loader: - kv 11: llama.feed_forward_length u32 = 8192 llama_model_loader: - kv 12: llama.attention.head_count u32 = 24 llama_model_loader: - kv 13: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 14: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 15: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 16: llama.attention.key_length u32 = 128 llama_model_loader: - kv 17: llama.attention.value_length u32 = 128 llama_model_loader: - kv 18: general.file_type u32 = 15 llama_model_loader: - kv 19: llama.vocab_size u32 = 128256 llama_model_loader: - kv 20: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 22: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 28: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ... llama_model_loader: - kv 29: general.quantization_version u32 = 2 llama_model_loader: - type f32: 58 tensors llama_model_loader: - type q4_K: 168 tensors llama_model_loader: - type q6_K: 29 tensors time=2024-10-21T07:25:23.530+08:00 level=INFO source=server.go:632 msg="waiting for server to become available" status="llm server loading model" llm_load_vocab: special tokens cache size = 256 llm_load_vocab: token to piece cache size = 0.7999 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 128256 llm_load_print_meta: n_merges = 280147 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 131072 llm_load_print_meta: n_embd = 3072 llm_load_print_meta: n_layer = 28 llm_load_print_meta: n_head = 24 llm_load_print_meta: n_head_kv = 8 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 3 llm_load_print_meta: n_embd_k_gqa = 1024 llm_load_print_meta: n_embd_v_gqa = 1024 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 8192 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 500000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 131072 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q4_K - Medium llm_load_print_meta: model params = 3.21 B llm_load_print_meta: model size = 1.87 GiB (5.01 BPW) llm_load_print_meta: general.name = Llama 3.2 3B Instruct llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>' llm_load_print_meta: EOS token = 128009 '<|eot_id|>' llm_load_print_meta: LF token = 128 'Ä' llm_load_print_meta: EOT token = 128009 '<|eot_id|>' llm_load_print_meta: max token length = 256 ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 1 ROCm devices: Device 0: AMD Radeon RX 6600, compute capability 10.3, VMM: no llm_load_tensors: ggml ctx size = 0.24 MiB llm_load_tensors: offloading 28 repeating layers to GPU llm_load_tensors: offloading non-repeating layers to GPU llm_load_tensors: offloaded 29/29 layers to GPU llm_load_tensors: ROCm0 buffer size = 1918.36 MiB llm_load_tensors: CPU buffer size = 308.23 MiB llama_new_context_with_model: n_ctx = 8192 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 500000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: ROCm0 KV buffer size = 896.00 MiB llama_new_context_with_model: KV self size = 896.00 MiB, K (f16): 448.00 MiB, V (f16): 448.00 MiB llama_new_context_with_model: ROCm_Host output buffer size = 2.00 MiB llama_new_context_with_model: ROCm0 compute buffer size = 424.00 MiB llama_new_context_with_model: ROCm_Host compute buffer size = 22.01 MiB llama_new_context_with_model: graph nodes = 902 llama_new_context_with_model: graph splits = 2 INFO [wmain] model loaded | tid="7716" timestamp=1729466728 time=2024-10-21T07:25:28.205+08:00 level=INFO source=server.go:637 msg="llama runner started in 4.93 seconds" [GIN] 2024/10/21 - 07:25:32 | 200 | 9.8357832s | 127.0.0.1 | POST "/api/chat" [GIN] 2024/10/21 - 07:25:32 | 200 | 232.0791ms | 127.0.0.1 | POST "/api/chat" time=2024-10-21T07:26:01.913+08:00 level=INFO source=sched.go:714 msg="new model will fit in available VRAM in single GPU, loading" model="D:\AI\ollama models\blobs\sha256-8eeb52dfb3bb9aefdf9d1ef24b3bdbcfbe82238798c4b918278320b6fcef18fe" gpu=0 parallel=4 available=8131477504 required="6.2 GiB" time=2024-10-21T07:26:01.913+08:00 level=INFO source=server.go:108 msg="system memory" total="31.9 GiB" free="15.2 GiB" free_swap="14.0 GiB" time=2024-10-21T07:26:01.914+08:00 level=INFO source=memory.go:326 msg="offload to rocm" layers.requested=-1 layers.model=33 layers.offload=33 layers.split="" memory.available="[7.6 GiB]" memory.gpu_overhead="0 B" memory.required.full="6.2 GiB" memory.required.partial="6.2 GiB" memory.required.kv="1.0 GiB" memory.required.allocations="[6.2 GiB]" memory.weights.total="4.7 GiB" memory.weights.repeating="4.3 GiB" memory.weights.nonrepeating="411.0 MiB" memory.graph.full="560.0 MiB" memory.graph.partial="677.5 MiB" time=2024-10-21T07:26:01.921+08:00 level=INFO source=server.go:399 msg="starting llama server" cmd="C:\Users\CP\AppData\Local\Programs\Ollama\lib\ollama\runners\rocm_v6.1\ollama_llama_server.exe --model D:\AI\ollama models\blobs\sha256-8eeb52dfb3bb9aefdf9d1ef24b3bdbcfbe82238798c4b918278320b6fcef18fe --ctx-size 8192 --batch-size 512 --embedding --log-disable --n-gpu-layers 33 --parallel 4 --port 8699" time=2024-10-21T07:26:01.924+08:00 level=INFO source=sched.go:449 msg="loaded runners" count=1 time=2024-10-21T07:26:01.924+08:00 level=INFO source=server.go:598 msg="waiting for llama runner to start responding" time=2024-10-21T07:26:01.924+08:00 level=INFO source=server.go:632 msg="waiting for server to become available" status="llm server error" INFO [wmain] starting c++ runner | tid="21172" timestamp=1729466761 INFO [wmain] build info | build=3670 commit="88c682cf" tid="21172" timestamp=1729466761 INFO [wmain] system info | n_threads=8 n_threads_batch=8 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | " tid="21172" timestamp=1729466761 total_threads=16 INFO [wmain] HTTP server listening | hostname="127.0.0.1" n_threads_http="15" port="8699" tid="21172" timestamp=1729466761 llama_model_loader: loaded meta data with 29 key-value pairs and 292 tensors from D:\AI\ollama models\blobs\sha256-8eeb52dfb3bb9aefdf9d1ef24b3bdbcfbe82238798c4b918278320b6fcef18fe (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 8B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1 llama_model_loader: - kv 5: general.size_label str = 8B llama_model_loader: - kv 6: general.license str = llama3.1 llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam... llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ... llama_model_loader: - kv 9: llama.block_count u32 = 32 llama_model_loader: - kv 10: llama.context_length u32 = 131072 llama_model_loader: - kv 11: llama.embedding_length u32 = 4096 llama_model_loader: - kv 12: llama.feed_forward_length u32 = 14336 llama_model_loader: - kv 13: llama.attention.head_count u32 = 32 llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 17: general.file_type u32 = 2 llama_model_loader: - kv 18: llama.vocab_size u32 = 128256 llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ... llama_model_loader: - kv 28: general.quantization_version u32 = 2 llama_model_loader: - type f32: 66 tensors llama_model_loader: - type q4_0: 225 tensors llama_model_loader: - type q6_K: 1 tensors time=2024-10-21T07:26:02.184+08:00 level=INFO source=server.go:632 msg="waiting for server to become available" status="llm server loading model" llm_load_vocab: special tokens cache size = 256 llm_load_vocab: token to piece cache size = 0.7999 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 128256 llm_load_print_meta: n_merges = 280147 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 131072 llm_load_print_meta: n_embd = 4096 llm_load_print_meta: n_layer = 32 llm_load_print_meta: n_head = 32 llm_load_print_meta: n_head_kv = 8 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 4 llm_load_print_meta: n_embd_k_gqa = 1024 llm_load_print_meta: n_embd_v_gqa = 1024 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 14336 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 500000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 131072 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = 8B llm_load_print_meta: model ftype = Q4_0 llm_load_print_meta: model params = 8.03 B llm_load_print_meta: model size = 4.33 GiB (4.64 BPW) llm_load_print_meta: general.name = Meta Llama 3.1 8B Instruct llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>' llm_load_print_meta: EOS token = 128009 '<|eot_id|>' llm_load_print_meta: LF token = 128 'Ä' llm_load_print_meta: EOT token = 128009 '<|eot_id|>' llm_load_print_meta: max token length = 256 ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 1 ROCm devices: Device 0: AMD Radeon RX 6600, compute capability 10.3, VMM: no llm_load_tensors: ggml ctx size = 0.27 MiB llm_load_tensors: offloading 32 repeating layers to GPU llm_load_tensors: offloading non-repeating layers to GPU llm_load_tensors: offloaded 33/33 layers to GPU llm_load_tensors: ROCm0 buffer size = 4156.00 MiB llm_load_tensors: CPU buffer size = 281.81 MiB llama_new_context_with_model: n_ctx = 8192 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 500000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: ROCm0 KV buffer size = 1024.00 MiB llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB llama_new_context_with_model: ROCm_Host output buffer size = 2.02 MiB llama_new_context_with_model: ROCm0 compute buffer size = 560.00 MiB llama_new_context_with_model: ROCm_Host compute buffer size = 24.01 MiB llama_new_context_with_model: graph nodes = 1030 llama_new_context_with_model: graph splits = 2 INFO [wmain] model loaded | tid="21172" timestamp=1729466769 time=2024-10-21T07:26:09.466+08:00 level=INFO source=server.go:637 msg="llama runner started in 7.54 seconds" [GIN] 2024/10/21 - 07:26:41 | 200 | 40.8337865s | 127.0.0.1 | POST "/api/chat" [GIN] 2024/10/21 - 07:26:47 | 200 | 2.1513ms | 127.0.0.1 | GET "/api/tags" time=2024-10-21T07:27:03.697+08:00 level=INFO source=server.go:108 msg="system memory" total="31.9 GiB" free="15.4 GiB" free_swap="14.1 GiB" time=2024-10-21T07:27:03.697+08:00 level=INFO source=memory.go:326 msg="offload to rocm" layers.requested=256 layers.model=29 layers.offload=29 layers.split="" memory.available="[7.4 GiB]" memory.gpu_overhead="0 B" memory.required.full="5.1 GiB" memory.required.partial="5.1 GiB" memory.required.kv="112.0 MiB" memory.required.allocations="[5.1 GiB]" memory.weights.total="3.8 GiB" memory.weights.repeating="3.3 GiB" memory.weights.nonrepeating="426.4 MiB" memory.graph.full="304.0 MiB" memory.graph.partial="730.4 MiB" time=2024-10-21T07:27:03.705+08:00 level=INFO source=server.go:399 msg="starting llama server" cmd="C:\Users\CP\AppData\Local\Programs\Ollama\lib\ollama\runners\rocm_v6.1\ollama_llama_server.exe --model D:\AI\ollama models\blobs\sha256-2bada8a7450677000f678be90653b85d364de7db25eb5ea54136ada5f3933730 --ctx-size 2048 --batch-size 512 --embedding --log-disable --n-gpu-layers 256 --parallel 1 --port 8729" time=2024-10-21T07:27:03.707+08:00 level=INFO source=sched.go:449 msg="loaded runners" count=1 time=2024-10-21T07:27:03.707+08:00 level=INFO source=server.go:598 msg="waiting for llama runner to start responding" time=2024-10-21T07:27:03.707+08:00 level=INFO source=server.go:632 msg="waiting for server to become available" status="llm server error" INFO [wmain] starting c++ runner | tid="10064" timestamp=1729466823 INFO [wmain] build info | build=3670 commit="88c682cf" tid="10064" timestamp=1729466823 INFO [wmain] system info | n_threads=8 n_threads_batch=8 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | " tid="10064" timestamp=1729466823 total_threads=16 INFO [wmain] HTTP server listening | hostname="127.0.0.1" n_threads_http="15" port="8729" tid="10064" timestamp=1729466823 llama_model_loader: loaded meta data with 34 key-value pairs and 339 tensors from D:\AI\ollama models\blobs\sha256-2bada8a7450677000f678be90653b85d364de7db25eb5ea54136ada5f3933730 (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen2 llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen2.5 7B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Qwen2.5 llama_model_loader: - kv 5: general.size_label str = 7B llama_model_loader: - kv 6: general.license str = apache-2.0 llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/Qwen/Qwen2.5-7... llama_model_loader: - kv 8: general.base_model.count u32 = 1 llama_model_loader: - kv 9: general.base_model.0.name str = Qwen2.5 7B llama_model_loader: - kv 10: general.base_model.0.organization str = Qwen llama_model_loader: - kv 11: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2.5-7B llama_model_loader: - kv 12: general.tags arr[str,2] = ["chat", "text-generation"] llama_model_loader: - kv 13: general.languages arr[str,1] = ["en"] llama_model_loader: - kv 14: qwen2.block_count u32 = 28 llama_model_loader: - kv 15: qwen2.context_length u32 = 32768 llama_model_loader: - kv 16: qwen2.embedding_length u32 = 3584 llama_model_loader: - kv 17: qwen2.feed_forward_length u32 = 18944 llama_model_loader: - kv 18: qwen2.attention.head_count u32 = 28 llama_model_loader: - kv 19: qwen2.attention.head_count_kv u32 = 4 llama_model_loader: - kv 20: qwen2.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 21: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 22: general.file_type u32 = 15 llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 24: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 31: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 32: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>... llama_model_loader: - kv 33: general.quantization_version u32 = 2 llama_model_loader: - type f32: 141 tensors llama_model_loader: - type q4_K: 169 tensors llama_model_loader: - type q6_K: 29 tensors llm_load_vocab: special tokens cache size = 22 time=2024-10-21T07:27:03.962+08:00 level=INFO source=server.go:632 msg="waiting for server to become available" status="llm server loading model" llm_load_vocab: token to piece cache size = 0.9310 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = qwen2 llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 152064 llm_load_print_meta: n_merges = 151387 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 32768 llm_load_print_meta: n_embd = 3584 llm_load_print_meta: n_layer = 28 llm_load_print_meta: n_head = 28 llm_load_print_meta: n_head_kv = 4 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 7 llm_load_print_meta: n_embd_k_gqa = 512 llm_load_print_meta: n_embd_v_gqa = 512 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-06 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 18944 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 2 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 1000000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 32768 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q4_K - Medium llm_load_print_meta: model params = 7.62 B llm_load_print_meta: model size = 4.36 GiB (4.91 BPW) llm_load_print_meta: general.name = Qwen2.5 7B Instruct llm_load_print_meta: BOS token = 151643 '<|endoftext|>' llm_load_print_meta: EOS token = 151645 '<|im_end|>' llm_load_print_meta: PAD token = 151643 '<|endoftext|>' llm_load_print_meta: LF token = 148848 'ÄĬ' llm_load_print_meta: EOT token = 151645 '<|im_end|>' llm_load_print_meta: max token length = 256 ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 1 ROCm devices: Device 0: AMD Radeon RX 6600, compute capability 10.3, VMM: no llm_load_tensors: ggml ctx size = 0.30 MiB llm_load_tensors: offloading 28 repeating layers to GPU llm_load_tensors: offloading non-repeating layers to GPU llm_load_tensors: offloaded 29/29 layers to GPU llm_load_tensors: ROCm0 buffer size = 4168.09 MiB llm_load_tensors: CPU buffer size = 292.36 MiB llama_new_context_with_model: n_ctx = 2048 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 1000000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: ROCm0 KV buffer size = 112.00 MiB llama_new_context_with_model: KV self size = 112.00 MiB, K (f16): 56.00 MiB, V (f16): 56.00 MiB llama_new_context_with_model: ROCm_Host output buffer size = 0.59 MiB llama_new_context_with_model: ROCm0 compute buffer size = 304.00 MiB llama_new_context_with_model: ROCm_Host compute buffer size = 11.01 MiB llama_new_context_with_model: graph nodes = 986 llama_new_context_with_model: graph splits = 2 INFO [wmain] model loaded | tid="10064" timestamp=1729466830 time=2024-10-21T07:27:10.974+08:00 level=INFO source=server.go:637 msg="llama runner started in 7.27 seconds" [GIN] 2024/10/21 - 07:27:26 | 200 | 1.1177ms | 127.0.0.1 | HEAD "/" [GIN] 2024/10/21 - 07:27:26 | 200 | 0s | 127.0.0.1 | GET "/api/ps"
time=2024-10-21T07:25:09.262+08:00 level=INFO source=common.go:49 msg="Dynamic LLM libraries" runners="[cpu cpu_avx cpu_avx2 cuda_v11 cuda_v12 rocm_v6.1]" 既然用这个版本的,可以直接在ollama https://github.com/ollama/ollama/issues 进行提问,官方版本https://github.com/ollama/ollama/blob/main/llm/generate/gen_windows.ps1 只支持"gfx1030""gfx1100" "gfx1101"
"gfx1102" 看log llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading 28 repeating layers to GPU
并没有什么问题。可以尝试这个版本 https://github.com/likelovewant/ollama-for-amd 然后替换rocm文件,再测试。或者自行编译也可以。
大神,我用的是https://github.com/likelovewant/ollama-for-amd的版本,之前一直是低版本覆盖升级上来的,后来出现这个问题后,我又下载了官网的安装版OllamaSetup.exe安装后再用https://github.com/likelovewant/ollama-for-amd里的ollama-windows-amd64-rocm6.1.2.7z覆盖,最后再用rocm.gfx1032.for.hip.sdk.6.1.2替换rocm,运行情况还是一样。 如果不用您的ollama以及rocm替换,那只能100%cpu运行。
可以直接 下载 https://github.com/likelovewant/ollama-for-amd/releases/download/v0.3.13/OllamaSetup.exe ,我不确定是否是这个原因,但是你从log 显示一切正常, 我本地测试 8g的内存足够运行 qwen 7b 的模型,除了显示 cuda_v11 cuda_v12 等不一样,其他都正常。此外可以尝试彻底关闭ollama 运行的程序 , 通过 在 ollama 安装目录下运行 ./ollama ,再开启另一个终端窗口再运行模型 ./ollama run qwen2 手动启动看看情况 。 此外,还可以尝试升级驱动试试
可以直接 下载 https://github.com/likelovewant/ollama-for-amd/releases/download/v0.3.13/OllamaSetup.exe ,我不确定是否是这个原因,但是你从log 显示一切正常, 我本地测试 8g的内存足够运行 qwen 7b 的模型,除了显示 cuda_v11 cuda_v12 等不一样,其他都正常。此外可以尝试彻底关闭ollama 运行的程序 , 通过 在 ollama 安装目录下运行 ./ollama ,再开启另一个终端窗口再运行模型 ./ollama run qwen2 手动启动看看情况 。 此外,还可以尝试升级驱动试试
各种都试了,还是不行。 暂时退回了0.3.6搭配rocm 5.7.7,显存使用就正常了。 这应该说明了是rocm 6.1.2的原因
ollama-windows-amd64-rocm-5.7.7z,v0.3.11 有rocm5.7 版
ollama-windows-amd64-rocm-5.7.7z,v0.3.11 有rocm5.7 版
嗯,谢谢大神。 希望能帮忙解决6.1.2 rocm带来的前述问题,想用llama3.2, 感谢!
"error looking up nvidia GPU memory" error="cuda driver library failed to get device context 801" time=2024-10-21T07:25:10.018+08:00 level=INFO source=types.go:107 msg="inference compute" id=0 library=rocm variant="" compute=gfx1032 driver=6.2 name="AMD Radeon RX 6600" total="8.0 GiB" available="7.8 GiB"
可以尝试更新v0.3.14 ,并测试 这个rocm lib rocm.gfx1032.for.hip.sdk.6.1.2.optimized.Fremont.Dango.Version.7z,此外你这种情况属各例,可以尝试更新驱动试试。或者查看你的系统变量中有没有可能影响的其他设置
已尝试0.3.14和Fremont.Dango.Version.7z,问题依旧 :(
那就不是rocm 本身的问题,可能是系统设置或驱动方面的影响。 备选项:1,尝试使用zluda 的方式使用官方版本的 替换cuda11 中的相关文件,进行体验证https://github.com/ollama/ollama/issues/4464 2.根据 https://github.com/likelovewant/ollama-for-amd/wiki 说明,自行编译Rocm5.7 的ollama。
经过反复尝试,最终发现可能是新版本显卡驱动的原因。 把显卡驱动卸载后,重新安装6.1.2的hip,包括里面的显卡驱动。然后没有在官方hip安装下的rocm里覆盖1032的编译rocm,只是覆盖了ollama里的,显存使用不正常的问题就解决了。 感谢大神!!!
环境: romc 6.12 ollama 0.3.13 win 11,rx6600, i7 11700k, 32g
rocm的library和dll都替换了
ollama ps显示100%gpu,但任务管理器显示显卡显存占用不多,反而内存占用更多,似乎显卡没有全力运行
另一台机子5500显卡,运行速度比这个6600还快一些
求助大神!