Closed NoPainNoCode closed 4 years ago
Hi NoPainNoCode,
Thanks for your question!
I've added a demo ipython notebook in datasets/ folder. Please have a look there for the detailed pre-processing procedure. In summary, we only standardised the time series by removing the mean and normalising by the standard deviation of the original time series.
As for the meaning of the specific features in the loaded data, I will list the explanation below:
Hope this explanation is helpful for you!
Best wishes, Lin
[below] data = np.load('./machine_temp.npz', mmap_mode='r', allow_pickle=True) for i, k in enumerate(data.files): print("i:{}, k:{}".format(i, k)) ==========result========== i:0, k:t i:1, k:t_unit i:2, k:readings i:3, k:idx_anomaly i:4, k:idx_split i:5, k:training i:6, k:test i:7, k:train_m i:8, k:train_std i:9, k:t_train i:10, k:t_test i:11, k:idx_anomaly_test