linkedin / Liger-Kernel

Efficient Triton Kernels for LLM Training
https://arxiv.org/pdf/2410.10989
BSD 2-Clause "Simplified" License
3.55k stars 211 forks source link

[feat] support for DeepseekV2 #129

Open tmm1 opened 3 months ago

tmm1 commented 3 months ago

πŸš€ The feature, motivation and pitch

It would be nice to support DeepseekV2 models. Unfortunately the modeling code is not yet accepted into transformers, and requires trust_remote_code=True

I'm monkey-patching myself for now, and wanted to leave some notes that may be helpful when support is added officially down the road.

from accelerate import init_empty_weights
from transformers import AutoModelForCausalLM

with init_empty_weights():
    model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
    modeling_mod = sys.modules[model.__class__.__module__]

modeling_mod.apply_rotary_pos_emb = liger_rotary_pos_emb
modeling_mod.DeepseekV2RMSNorm = LigerRMSNorm
modeling_mod.DeepseekV2MLP = LigerSwiGLUMLP
modeling_mod.CrossEntropyLoss = LigerCrossEntropyLoss
modeling_mod.DeepseekV2ForCausalLM.forward = deepseekv2_lce_forward

One initial issue when swapping in swiglu:

  File "/mnt/ML/huggingface/modules/transformers_modules/deepseek-ai/DeepSeek-Coder-V2-Lite-Base/ea9b066cee82f82906fdd58898cb3788b1c5d770/modeling_deepseek.py", line 555, in <listcomp>
    DeepseekV2MLP(
TypeError: LigerSwiGLUMLP.__init__() got an unexpected keyword argument 'intermediate_size'
tmm1 commented 3 months ago
modeling_mod.apply_rotary_pos_emb = liger_rotary_pos_emb

this is causing loss calculations to be wildly different for some reason

i will investigate further


TypeError: LigerSwiGLUMLP.init() got an unexpected keyword argument 'intermediate_size'

i was able to fix this issue as follows:

modeling_mod.DeepseekV2MLP.forward = LigerSwiGLUMLP.forward
tmm1 commented 3 months ago

this is causing loss calculations to be wildly different for some reason

the rope method seems to be modified in deepseek v2?

llama:

    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

deepseekv2:

    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)

    b, h, s, d = q.shape
    q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)

    b, h, s, d = k.shape
    k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed
xinyubai1209 commented 3 months ago

deepseek v2 use MLA(Multi-head Latent Attention) to reduce the kv cache.

qingquansong commented 3 months ago

Yeah, deepseekv2 one is quite interesting as it used decoupled RoPE.

For the MLA part, since it mainly target on inference case speed up with absorbed low-rank projection matrices into the original linear matrices. Feel free to first try implementing the layers apart from that and can gradually improve with separate prs. Thanks for the interesting feature request and rapid kick off~