Closed Pushkaran-P closed 1 year ago
Your data is in a nonstandard format: %d/%m/%y
instead of %m/%d/%y
. Thus, default numpy
datetime format inference was failing. Pass date_format = "%d/%m/%y"
in MetadataParam
to get rid of this issue, check the attached image.
df = pd.read_csv("/Users/sapatra/Downloads/df.csv")
ts = UnivariateTimeSeries()
ts.load_data(df=df, time_col="time", value_col="val", date_format="%d/%m/%y")
# ts.df.head(25)
ts.plot()
A few suggestions for model training:
ridge
works the best for prediction.model_template=ModelTemplateEnum.SILVERKITE_MONTHLY.name
monthly_tutorial
for an in-depth explanation: https://github.com/linkedin/greykite/blob/master/docs/nbpages/tutorials/0200_monthly_data.py
Hello all,
I am trying to fit my time series data with greykite using the Silverkite algorithm, even though the model works there are some changes I'd like to avoid, the dataset I am using df.csv `
def getchangepoint(tempdf):
def getmodelcomponentsparam(df_merged):
def silverkitemodel(df_merged,firstnonzeropos):
` Consider firstnonzeropos as 0 The error message I'm facing
Best Regards, Pushkar