Open chuanfushen opened 10 months ago
I have deal with this issue by modifying config.yaml:
defaults:
- datamodule: data
hydra:
run:
dir: outputs/${expname}/
expname: joint
resume: false
starting_path: 'checkpoints/0.pth'
eval_mode: interp
seed: 42
agent_tot: 1
agent_id: 0
trainer:
max_epochs: 2000
gradient_clip_val: 0.1
check_val_every_n_epoch: 10
lr_scheduler_stepsize: [500,1000,1500]
lr_schedule_decay_rate: 0.1
deterministic: true
gpus: -1
log_every_n_steps: 5
accelerator: 'ddp'
profiler: 'simple'
model:
dim_naked_shape: 512
dim_clothed_shape: 512
dim_texture: 512
deformer:
_target_: lib.model.deformer.ForwardDeformer
max_steps: 50
disp_network:
_target_: lib.model.network.ImplicitNetwork
d_in: 3
d_out: 3
width: 128
depth: 4
geometric_init: false
bias: 1
weight_norm: true
multires: 0
pose_cond_dim: 69
pose_cond_layer: []
pose_embed_dim: -1
shape_cond_dim: 512
shape_cond_layer: [0]
shape_embed_dim: -1
latent_cond_dim: 128
latent_cond_layer: []
latent_embed_dim: -1
final_acti_type: none
lbs_network:
_target_: lib.model.network.ImplicitNetwork
d_in: 3
d_out: 24
width: 128
depth: 4
geometric_init: false
bias: 1
weight_norm: true
multires: 0
pose_cond_dim: 69
pose_cond_layer: []
pose_embed_dim: -1
shape_cond_dim: 10
shape_cond_layer: []
shape_embed_dim: -1
latent_cond_dim: 512
latent_cond_layer: [0]
latent_embed_dim: -1
final_acti_type: none
clothed_network:
_target_: lib.model.network.ImplicitNetwork
d_in: 3
d_out: 257
width: 512
depth: 8
geometric_init: true
bias: 1
skip_in: [4]
weight_norm: true
multires: 6
pose_cond_dim: 69
pose_cond_layer: []
pose_embed_dim: -1
shape_cond_dim: 10
shape_cond_layer: []
shape_embed_dim: -1
latent_cond_dim: 512
latent_cond_layer: [0]
latent_embed_dim: -1
feat_cond_dim: 256
feat_cond_layer: [0]
final_acti_type: none
naked_network:
_target_: lib.model.network.ImplicitNetwork
d_in: 3
d_out: 257
width: 512
depth: 8 #4
geometric_init: true
bias: 1
skip_in: [4]
weight_norm: true
multires: 6
pose_cond_dim: 69
pose_cond_layer: []
pose_embed_dim: -1
shape_cond_dim: 10
shape_cond_layer: []
shape_embed_dim: -1
latent_cond_dim: 64
latent_cond_layer: [0]
latent_embed_dim: -1
final_acti_type: none
texture_network:
_target_: lib.model.network.ImplicitNetwork
d_in: 3
d_out: 3
width: 256 #128
depth: 6 #4
weight_norm: true
multires: 6
pose_cond_dim: 69
pose_cond_layer: []
pose_embed_dim: -1
shape_cond_dim: 10
shape_cond_layer: []
shape_embed_dim: -1
latent_cond_dim: 512
latent_cond_layer: [0, 4]
skip_in: []
latent_embed_dim: -1
feat_cond_dim: 256
feat_cond_layer: [0]
optim:
lr: 1e-3
nepochs_pretrain: 10 #1
pretrain_bone: true
nepochs_pretrain_coarse: 0 #1
lambda_bone_occ: 1
lambda_bone_w: 10
lambda_disp: 10
lambda_reg: 1e-3
I have deal with this issue by modifying config.yaml:
defaults: - datamodule: data hydra: run: dir: outputs/${expname}/ expname: joint resume: false starting_path: 'checkpoints/0.pth' eval_mode: interp seed: 42 agent_tot: 1 agent_id: 0 trainer: max_epochs: 2000 gradient_clip_val: 0.1 check_val_every_n_epoch: 10 lr_scheduler_stepsize: [500,1000,1500] lr_schedule_decay_rate: 0.1 deterministic: true gpus: -1 log_every_n_steps: 5 accelerator: 'ddp' profiler: 'simple' model: dim_naked_shape: 512 dim_clothed_shape: 512 dim_texture: 512 deformer: _target_: lib.model.deformer.ForwardDeformer max_steps: 50 disp_network: _target_: lib.model.network.ImplicitNetwork d_in: 3 d_out: 3 width: 128 depth: 4 geometric_init: false bias: 1 weight_norm: true multires: 0 pose_cond_dim: 69 pose_cond_layer: [] pose_embed_dim: -1 shape_cond_dim: 512 shape_cond_layer: [0] shape_embed_dim: -1 latent_cond_dim: 128 latent_cond_layer: [] latent_embed_dim: -1 final_acti_type: none lbs_network: _target_: lib.model.network.ImplicitNetwork d_in: 3 d_out: 24 width: 128 depth: 4 geometric_init: false bias: 1 weight_norm: true multires: 0 pose_cond_dim: 69 pose_cond_layer: [] pose_embed_dim: -1 shape_cond_dim: 10 shape_cond_layer: [] shape_embed_dim: -1 latent_cond_dim: 512 latent_cond_layer: [0] latent_embed_dim: -1 final_acti_type: none clothed_network: _target_: lib.model.network.ImplicitNetwork d_in: 3 d_out: 257 width: 512 depth: 8 geometric_init: true bias: 1 skip_in: [4] weight_norm: true multires: 6 pose_cond_dim: 69 pose_cond_layer: [] pose_embed_dim: -1 shape_cond_dim: 10 shape_cond_layer: [] shape_embed_dim: -1 latent_cond_dim: 512 latent_cond_layer: [0] latent_embed_dim: -1 feat_cond_dim: 256 feat_cond_layer: [0] final_acti_type: none naked_network: _target_: lib.model.network.ImplicitNetwork d_in: 3 d_out: 257 width: 512 depth: 8 #4 geometric_init: true bias: 1 skip_in: [4] weight_norm: true multires: 6 pose_cond_dim: 69 pose_cond_layer: [] pose_embed_dim: -1 shape_cond_dim: 10 shape_cond_layer: [] shape_embed_dim: -1 latent_cond_dim: 64 latent_cond_layer: [0] latent_embed_dim: -1 final_acti_type: none texture_network: _target_: lib.model.network.ImplicitNetwork d_in: 3 d_out: 3 width: 256 #128 depth: 6 #4 weight_norm: true multires: 6 pose_cond_dim: 69 pose_cond_layer: [] pose_embed_dim: -1 shape_cond_dim: 10 shape_cond_layer: [] shape_embed_dim: -1 latent_cond_dim: 512 latent_cond_layer: [0, 4] skip_in: [] latent_embed_dim: -1 feat_cond_dim: 256 feat_cond_layer: [0] optim: lr: 1e-3 nepochs_pretrain: 10 #1 pretrain_bone: true nepochs_pretrain_coarse: 0 #1 lambda_bone_occ: 1 lambda_bone_w: 10 lambda_disp: 10 lambda_reg: 1e-3
Hello, did you reproduce the results of the author's?
not really, I am currently working on other project, so I don't continue working on this repo anymore
Hi, Thanks for your great work! When I train THuman using the script:
I obtain the below error.