liupei101 / TFDeepSurv

COX Proportional risk model and survival analysis implemented by tensorflow.
MIT License
101 stars 27 forks source link

The NAN value appears when used Bayesian Hyperparameters Optimization #17

Closed DWang12138 closed 2 years ago

DWang12138 commented 2 years ago

Hello!When I used hpopt.py to search hyperparameters ,the following error occurred:ValueError: NaNs detected in inputs, please correct or drop. Do you know why?

File "D:/pythonProject1/femaletiaocan.py", line 101, in train_dsl_by_vd ds.train(train_X, train_y, num_steps=params['num_rounds'], silent=True) File "D:\Program Files\Python\lib\site-packages\tfdeepsurv\dsl.py", line 238, in train watch_list['metrics'].append(concordance_index(self.train_data_y.values, -y_hat)) File "D:\Program Files\Python\lib\site-packages\tfdeepsurv\utils.py", line 106, in concordance_index ci_value = ci(t, y_pred, e) File "D:\Program Files\Python\lib\site-packages\lifelines\utils\concordance.py", line 91, in concordance_index event_times, predicted_scores, event_observed = _preprocess_scoring_data(event_times, predicted_scores, event_observed) File "D:\Program Files\Python\lib\site-packages\lifelines\utils\concordance.py", line 301, in _preprocess_scoring_data raise ValueError("NaNs detected in inputs, please correct or drop.") ValueError: NaNs detected in inputs, please correct or drop.