Open dreamcubeblock opened 12 months ago
the code in model/point_rae.py:
if self.side is not None: alpha_squashed = torch.sigmoid(self.side_alpha) side_output = alpha_squashed * x[:, 1:] + (1 - alpha_squashed) * side_output concat_f = torch.cat([x[:, 0], side_output.max(1)[0]], dim=-1) else: # concat_res = torch.cat([x_res[:, 0], x_res[:, 1:].max(1)[0]], dim=-1) concat_pred = torch.cat([x_pred.mean(1), x_pred.max(1)[0]], dim=-1) # x = torch.cat([x_res, x_pred], dim=1) # concat_f = torch.cat([x.mean(1), x.max(1)[0]], dim=-1)
Looks a little different than what you described in your paper.
the code in model/point_rae.py:
Looks a little different than what you described in your paper.