Open lix19937 opened 1 year ago
2023-06-05 22:55:46.677 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:104 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.2887e-02, 1.7004e-01, 7.7665e-03, -1.2065e-03, 3.1058e-02, -5.5939e-02, 3.9869e-40, 2.6908e-01, -1.3084e-01, -6.1333e-02, -6.7053e-02, 1.3559e-02, -1.3859e-01, 3.8813e-03, -8.3947e-02, -2.0623e-02, -2.0725e-02, -1.1800e-01, 1.6839e-01, -4.7589e-02, -1.6048e-01, 5.6010e-40, -3.4688e-03, 3.8975e-40, -2.8174e-03, 7.7292e-02, -7.7709e-02, -8.1481e-03, -9.5860e-02, 6.1986e-02, 4.2985e-01, 3.2533e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[ 7.2847e-40, 5.4634e-40, -5.9673e-40, -4.2663e-40, 1.8787e-40, -3.0531e-40, -5.7855e-40, 7.1423e-40, 3.9641e-40, 4.8552e-40, -4.5281e-09, -7.2763e-40, 1.9824e-40, -1.8262e-40, 5.1024e-40, -7.0874e-40, -3.3623e-40, 3.6098e-40, 4.4807e-40, 2.7522e-40, 7.2756e-40, -3.8097e-08, 7.3738e-40, -1.0897e-40, -1.1436e-07, 6.7669e-40, 6.1741e-40, 4.5877e-07, 7.0437e-40, -5.7909e-41, 6.3997e-40, -7.5440e-40]], device='cuda:0') epoch 104, Update LR to 0.00010879620454997907, from IR 0.00010897164694917426 lidarv5-tmp-local-shuffle-0527/default |################################| train: [105][1652/1653]|Tot: 1:06:38 |ETA: 0:00:03 |loss 0.2448 |Data 0.001s(0.144s) |Net 2.419s 2023-06-06 00:02:29.431 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:105 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.4970e-02, 1.6814e-01, 8.9475e-03, -1.8581e-03, 3.1485e-02, -4.8718e-02, -5.6179e-40, 2.6865e-01, -1.2469e-01, -5.6836e-02, -6.3926e-02, 1.0479e-02, -1.3709e-01, 7.9077e-03, -8.7664e-02, -2.1172e-02, -2.0327e-02, -1.1741e-01, 1.6451e-01, -5.0475e-02, -1.6287e-01, -5.3757e-40, -4.2388e-03, -3.4203e-40, -7.6826e-04, 7.6541e-02, -7.8524e-02, -9.0987e-03, -9.3053e-02, 5.8774e-02, 4.3109e-01, 3.2294e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-7.0461e-40, -5.5133e-40, 6.2291e-40, 4.2712e-40, -1.7802e-40, 3.0451e-40, 5.1912e-40, -6.8836e-40, -3.3537e-40, -4.9019e-40, 3.4148e-10, 7.0544e-40, -1.6765e-40, 1.8327e-40, -5.8743e-40, 6.9384e-40, 3.9555e-40, -3.7080e-40, -5.2764e-40, -3.3460e-40, -7.3601e-40, -7.7681e-09, -7.1094e-40, 1.3496e-40, 3.9451e-08, -6.4967e-40, -6.0222e-40, -1.3735e-08, -7.2870e-40, 6.4055e-41, -6.8639e-40, 7.7015e-40]], device='cuda:0') epoch 105, Update LR to 0.00010862069139356363, from IR 0.00010879620454997907 lidarv5-tmp-local-shuffle-0527/default |################################| train: [106][1652/1653]|Tot: 1:22:06 |ETA: 0:00:03 |loss 0.2430 |Data 0.001s(0.154s) |Net 2.980s 2023-06-06 01:24:39.407 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:106 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.3616e-02, 1.6502e-01, 1.1459e-02, -7.3224e-04, 3.1575e-02, -4.5815e-02, -1.3834e-41, 2.6554e-01, -1.2657e-01, -5.6097e-02, -6.0077e-02, 1.2217e-02, -1.3550e-01, 7.3790e-03, -9.0899e-02, -1.9378e-02, -1.4133e-02, -1.1718e-01, 1.6311e-01, -4.9545e-02, -1.6341e-01, 5.5834e-40, 6.3312e-06, 2.6680e-40, -3.5029e-03, 7.7257e-02, -8.0032e-02, -7.0960e-03, -9.4800e-02, 5.9132e-02, 4.2985e-01, 2.9123e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[ 7.2616e-40, 5.4458e-40, -5.9476e-40, -4.2525e-40, 1.8728e-40, -3.0433e-40, -4.5502e-40, 6.3586e-40, 2.7346e-40, 4.8395e-40, 1.1475e-09, -7.2532e-40, 1.9765e-40, -1.8203e-40, 6.3024e-40, -7.3693e-40, -4.5682e-40, 3.5980e-40, 5.6826e-40, 3.9600e-40, 7.0998e-40, 1.6372e-06, 6.8939e-40, -1.0858e-40, -1.9956e-06, 6.8977e-40, 6.1545e-40, -9.1775e-06, 7.0207e-40, -5.7712e-41, 7.1394e-40, -7.5194e-40]], device='cuda:0') epoch 106, Update LR to 0.00010844510730836042, from IR 0.00010862069139356363 lidarv5-tmp-local-shuffle-0527/default |################################| train: [107][1652/1653]|Tot: 2:29:39 |ETA: 0:00:03 |loss 0.2432 |Data 0.001s(3.252s) |Net 5.432s 2023-06-06 03:54:22.916 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:107 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.1089e-02, 1.6508e-01, 1.5741e-02, -3.3447e-03, 3.4830e-02, -4.7827e-02, 6.2442e-40, 2.6557e-01, -1.2535e-01, -5.2924e-02, -5.5817e-02, 1.5256e-02, -1.3657e-01, 7.2280e-03, -9.1440e-02, -1.9196e-02, -1.3112e-02, -1.1322e-01, 1.6417e-01, -5.0238e-02, -1.6143e-01, -5.3580e-40, -1.4572e-03, -2.1948e-40, -6.7317e-03, 8.0151e-02, -8.0745e-02, -6.2427e-03, -1.0095e-01, 6.4362e-02, 4.3042e-01, 2.9105e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-7.0230e-40, -5.4956e-40, 6.2095e-40, 4.2574e-40, -1.7743e-40, 3.0353e-40, 3.9598e-40, -5.7985e-40, -2.1282e-40, -4.8862e-40, -3.5517e-09, 7.0314e-40, -1.6707e-40, 1.8268e-40, -5.8547e-40, 6.9154e-40, 5.1575e-40, -3.6963e-40, -5.2588e-40, -4.5500e-40, -6.8809e-40, -1.8634e-08, -6.3270e-40, 1.3457e-40, 3.1502e-08, -6.4751e-40, -6.0026e-40, -7.1252e-08, -7.2639e-40, 6.3859e-41, -7.2972e-40, 7.6770e-40]], device='cuda:0') epoch 107, Update LR to 0.00010826945212203765, from IR 0.00010844510730836042 lidarv5-tmp-local-shuffle-0527/default |################################| train: [108][1652/1653]|Tot: 4:58:28 |ETA: 0:00:02 |loss 0.2433 |Data 0.001s(1.817s) |Net 10.834s 2023-06-06 08:52:55.265 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:108 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.4488e-02, 1.6699e-01, 1.7869e-02, -8.0357e-03, 3.4708e-02, -4.9619e-02, -3.3140e-40, 2.6746e-01, -1.2720e-01, -5.3761e-02, -5.6161e-02, 1.3767e-02, -1.3474e-01, 8.4116e-03, -9.2662e-02, -1.8048e-02, -1.1099e-02, -1.1339e-01, 1.6425e-01, -5.4869e-02, -1.6103e-01, 5.5657e-40, -5.6524e-03, 2.6602e-40, -3.8826e-03, 8.1553e-02, -7.7865e-02, -7.7385e-03, -1.0737e-01, 6.7119e-02, 4.3305e-01, 3.2209e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[ 7.2385e-40, 5.4281e-40, -5.9280e-40, -4.2388e-40, 1.8670e-40, -3.0335e-40, -3.3227e-40, 5.1253e-40, 1.5130e-40, 4.8238e-40, 1.6670e-11, -7.2301e-40, 1.9706e-40, -1.8145e-40, 6.2828e-40, -7.3462e-40, -5.7662e-40, 3.5862e-40, 5.6650e-40, 5.1600e-40, 6.3186e-40, 6.3764e-08, 5.8105e-40, -1.0818e-40, 1.3147e-08, 6.8762e-40, 6.1349e-40, -9.3835e-08, 6.9976e-40, -5.7516e-41, 7.2678e-40, -7.4949e-40]], device='cuda:0') epoch 108, Update LR to 0.00010809372566149436, from IR 0.00010826945212203765 lidarv5-tmp-local-shuffle-0527/default |################################| train: [109][1652/1653]|Tot: 3:23:04 |ETA: 0:00:03 |loss 0.2431 |Data 0.001s(0.136s) |Net 7.371s 2023-06-06 12:16:03.893 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:109 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.3816e-02, 1.6722e-01, 1.9102e-02, -1.0957e-02, 3.7341e-02, -4.9487e-02, -2.4052e-40, 2.6676e-01, -1.2916e-01, -5.2166e-02, -5.4108e-02, 1.3716e-02, -1.3244e-01, 8.0332e-03, -9.5063e-02, -1.6073e-02, -1.2728e-02, -1.1164e-01, 1.6116e-01, -5.1300e-02, -1.6068e-01, -5.3401e-40, -9.5238e-03, -2.1869e-40, -6.5004e-03, 7.8925e-02, -7.8060e-02, -7.3987e-03, -1.0823e-01, 6.9440e-02, 4.3400e-01, 3.3983e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-6.9997e-40, -5.4777e-40, 6.1896e-40, 4.2435e-40, -1.7683e-40, 3.0253e-40, 2.7361e-40, -4.5688e-40, -9.1048e-41, -4.8702e-40, 1.9124e-10, 7.0080e-40, -1.6647e-40, 1.8208e-40, -5.8348e-40, 6.8920e-40, 6.3514e-40, -3.6843e-40, -5.2408e-40, -5.7458e-40, -5.7990e-40, -7.0300e-09, -5.0953e-40, 1.3417e-40, -4.7939e-08, -6.4532e-40, -5.9827e-40, 2.0284e-07, -7.2406e-40, 6.3660e-41, -7.1219e-40, 7.6521e-40]], device='cuda:0') epoch 109, Update LR to 0.00010791792775285545, from IR 0.00010809372566149436 lidarv5-tmp-local-shuffle-0527/default |################################| train: [110][1652/1653]|Tot: 1:32:18 |ETA: 0:00:03 |loss 0.2435 |Data 0.001s(0.163s) |Net 3.350s 2023-06-06 13:48:26.028 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:110 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.3029e-02, 1.6674e-01, 2.0139e-02, -1.4303e-02, 4.0977e-02, -4.8887e-02, 6.9707e-40, 2.6520e-01, -1.3121e-01, -5.7170e-02, -5.3660e-02, 1.4425e-02, -1.3138e-01, 6.8347e-03, -9.1855e-02, -1.2724e-02, -1.3704e-02, -1.1018e-01, 1.5807e-01, -4.9353e-02, -1.6057e-01, 5.5480e-40, -1.3748e-02, 2.6523e-40, -1.2608e-02, 7.4852e-02, -8.0278e-02, -5.7886e-03, -1.1057e-01, 7.1755e-02, 4.3413e-01, 3.4258e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[ 7.2155e-40, 5.4105e-40, -5.9084e-40, -4.2251e-40, 1.8611e-40, -3.0237e-40, -2.1031e-40, 3.8998e-40, 2.9932e-41, 4.8081e-40, -6.6405e-12, -7.2071e-40, 1.9647e-40, -1.8086e-40, 6.2632e-40, -7.3231e-40, -6.8052e-40, 3.5744e-40, 5.6473e-40, 6.3522e-40, 6.2990e-40, -5.1814e-08, 4.5830e-40, -1.0779e-40, 1.0324e-07, 6.8546e-40, 6.1153e-40, 7.3898e-08, 6.9745e-40, -5.7320e-41, 6.7908e-40, -7.4704e-40]], device='cuda:0') epoch 110, Update LR to 0.0001077420582214665, from IR 0.00010791792775285545 lidarv5-tmp-local-shuffle-0527/default |################################| train: [111][1652/1653]|Tot: 4:01:29 |ETA: 0:15:17 |loss 0.2427 |Data 0.001s(0.194s) |Net 8.765s 2023-06-06 17:49:58.988 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:111 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.3735e-02, 1.6594e-01, 2.0995e-02, -1.3864e-02, 4.3143e-02, -4.6675e-02, -1.0313e-40, 2.6502e-01, -1.3447e-01, -6.1970e-02, -4.9949e-02, 1.6221e-02, -1.2958e-01, 7.3152e-03, -9.2446e-02, -1.1339e-02, -9.1593e-03, -1.1090e-01, 1.5972e-01, -4.8098e-02, -1.6073e-01, -5.3225e-40, -9.6607e-03, -2.1790e-40, -1.7980e-02, 7.6374e-02, -8.2092e-02, -3.9734e-03, -1.0985e-01, 7.5603e-02, 4.3414e-01, 3.2850e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-6.9766e-40, -5.4600e-40, 6.1699e-40, 4.2298e-40, -1.7624e-40, 3.0155e-40, 1.5204e-40, -3.3472e-40, 2.9932e-41, -4.8545e-40, 2.6280e-40, 6.9850e-40, -1.6588e-40, 1.8149e-40, -5.8152e-40, 6.8689e-40, 7.0849e-40, -3.6726e-40, -5.2232e-40, -6.7830e-40, -5.7794e-40, 7.6072e-08, -5.0796e-40, 1.3377e-40, 1.2533e-07, -6.4316e-40, -5.9631e-40, 1.9105e-07, -7.2175e-40, 6.3463e-41, -6.3444e-40, 7.6276e-40]], device='cuda:0') epoch 111, Update LR to 0.00010756611689188883, from IR 0.0001077420582214665 lidarv5-tmp-local-shuffle-0527/default |################################| train: [112][1652/1653]|Tot: 2:37:22 |ETA: 0:00:03 |loss 0.2429 |Data 0.001s(0.147s) |Net 5.713s 2023-06-06 20:27:26.031 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:112 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.5328e-02, 1.6668e-01, 2.4832e-02, -1.5430e-02, 4.3440e-02, -4.5102e-02, -4.6489e-40, 2.6581e-01, -1.3361e-01, -6.2535e-02, -4.8935e-02, 1.4702e-02, -1.3255e-01, 4.8784e-03, -9.1641e-02, -1.1174e-02, -6.1822e-03, -1.1170e-01, 1.6069e-01, -4.9373e-02, -1.6282e-01, 5.5301e-40, -7.4490e-03, 2.6444e-40, -1.7399e-02, 7.9019e-02, -8.3373e-02, -1.6541e-03, -1.0684e-01, 7.6596e-02, 4.3532e-01, 3.3184e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[ 7.1921e-40, 5.3926e-40, -5.8885e-40, -4.2111e-40, 1.8551e-40, -3.0137e-40, -8.9127e-41, 3.8878e-40, -9.0653e-41, 4.7922e-40, -2.1954e-40, -7.1837e-40, 1.9587e-40, -1.8026e-40, 6.2433e-40, -7.2998e-40, -7.2345e-40, 3.5625e-40, 5.6294e-40, 7.0842e-40, 6.2791e-40, -3.6609e-08, 4.5671e-40, -1.0739e-40, -9.9773e-09, 6.8327e-40, 6.0954e-40, -3.8545e-07, 6.9512e-40, -5.7121e-41, 5.7140e-40, -7.4455e-40]], device='cuda:0') epoch 112, Update LR to 0.00010739010358789431, from IR 0.00010756611689188883 lidarv5-tmp-local-shuffle-0527/default |################################| train: [113][1652/1653]|Tot: 4:16:20 |ETA: 0:00:03 |loss 0.2431 |Data 0.001s(0.155s) |Net 9.305s 2023-06-07 00:43:51.296 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:113 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.3606e-02, 1.6583e-01, 2.8010e-02, -1.6459e-02, 4.5357e-02, -4.1937e-02, 4.8317e-40, 2.6461e-01, -1.2871e-01, -5.9981e-02, -4.6495e-02, 1.5602e-02, -1.3804e-01, 5.6710e-03, -8.9051e-02, -9.3686e-03, -6.5640e-03, -1.1087e-01, 1.6000e-01, -4.7224e-02, -1.6344e-01, -5.3048e-40, -6.9732e-03, -2.1712e-40, -2.4918e-02, 8.0611e-02, -8.7258e-02, -1.9810e-03, -1.0488e-01, 7.7706e-02, 4.3535e-01, 3.1565e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-6.9536e-40, -5.4424e-40, 6.1503e-40, 4.2160e-40, -1.7565e-40, 3.0057e-40, 3.1262e-41, -3.3355e-40, 1.5012e-40, -4.8389e-40, 2.6202e-40, 6.9619e-40, -1.6529e-40, 1.8090e-40, -5.7956e-40, 6.8459e-40, 7.2121e-40, -3.6608e-40, -5.2055e-40, -7.2119e-40, -5.7597e-40, 8.1427e-09, -5.0639e-40, 1.3338e-40, -2.3228e-09, -6.4100e-40, -5.9435e-40, 2.2931e-07, -7.1945e-40, 6.3267e-41, -5.1209e-40, 7.6030e-40]], device='cuda:0') epoch 113, Update LR to 0.0001072140181324601, from IR 0.00010739010358789431 lidarv5-tmp-local-shuffle-0527/default |################################| train: [114][1652/1653]|Tot: 1:20:20 |ETA: 0:00:03 |loss 0.2424 |Data 0.001s(0.139s) |Net 2.916s 2023-06-07 02:04:16.262 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:114 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.3471e-02, 1.6651e-01, 3.0158e-02, -1.5612e-02, 4.3737e-02, -3.8028e-02, 1.2260e-40, 2.6557e-01, -1.3308e-01, -6.2753e-02, -4.5945e-02, 9.6441e-03, -1.3712e-01, 6.3991e-03, -8.8163e-02, -8.5253e-03, -7.5668e-04, -1.1493e-01, 1.5635e-01, -4.6756e-02, -1.6808e-01, 5.5125e-40, -7.9192e-04, 2.6365e-40, -3.1136e-02, 7.9366e-02, -8.8671e-02, -4.6701e-03, -1.0305e-01, 7.4724e-02, 4.3699e-01, 3.2393e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[ 7.1690e-40, 5.3749e-40, -5.8689e-40, -4.1974e-40, 1.8492e-40, -3.0039e-40, -8.8931e-41, 3.8761e-40, -2.1045e-40, 4.7765e-40, -2.1875e-40, -7.1606e-40, 1.9528e-40, -1.7967e-40, 6.2236e-40, -7.2767e-40, -7.0607e-40, 3.5507e-40, 5.6118e-40, 7.2111e-40, 6.2595e-40, -9.3816e-09, 4.5514e-40, -1.0700e-40, -1.1353e-07, 6.8111e-40, 6.0758e-40, 1.4323e-07, 6.9281e-40, -5.6925e-41, 5.6964e-40, -7.4210e-40]], device='cuda:0') epoch 114, Update LR to 0.00010703786034776358, from IR 0.0001072140181324601 lidarv5-tmp-local-shuffle-0527/default |################################| train: [115][1652/1653]|Tot: 1:50:40 |ETA: 0:00:03 |loss 0.2438 |Data 0.001s(0.134s) |Net 4.017s 2023-06-07 03:54:59.927 | INFO | models.model:save_model:117 - save_model, model:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth, epoch:115 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]], device='cuda:0') conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]], device='cuda:0') epoch 115, Update LR to 0.000106861630055177, from IR 0.00010703786034776358 lidarv5-tmp-local-shuffle-0527/default |################### | train: [116][1017/1653]|Tot: 6:24:33 |ETA: 0:22:17 |loss 0.2406 |Data 0.001s(0.228s) |Net 22.666s [E ProcessGroupNCCL.cpp:587] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18002499 milliseconds before timing out. [E ProcessGroupNCCL.cpp:587] [Rank 4] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18004752 milliseconds before timing out. [E ProcessGroupNCCL.cpp:587] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18005102 milliseconds before timing out. [E ProcessGroupNCCL.cpp:341] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data. To avoid this inconsistency, we are taking the entire process down. [E ProcessGroupNCCL.cpp:341] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data. To avoid this inconsistency, we are taking the entire process down. lidarv5-tmp-local-shuffle-0527/default |################### | train: [116][1018/1653]|Tot: 11:24:42 |ETA: 0:22:02 |loss 0.2430 |Data 0.001s(4.305s) |Net 40.316s terminate called after throwing an instance of 'std::runtime_error' terminate called after throwing an instance of 'std::runtime_error' what(): [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18005102 milliseconds before timing out. what(): [Rank 4] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18004752 milliseconds before timing out. [E ProcessGroupNCCL.cpp:341] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data. To avoid this inconsistency, we are taking the entire process down. terminate called after throwing an instance of 'std::runtime_error' what(): [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18002499 milliseconds before timing out. [E ProcessGroupNCCL.cpp:587] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18008064 milliseconds before timing out. [E ProcessGroupNCCL.cpp:587] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18008262 milliseconds before timing out. lidarv5-tmp-local-shuffle-0527/default |################### | train: [116][1018/1653]|Tot: 11:24:44 |ETA: 0:22:02 |loss 0.2406 |Data 0.001s(0.227s) |Net 40.318s [E ProcessGroupNCCL.cpp:341] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data. To avoid this inconsistency, we are taking the entire process down. terminate called after throwing an instance of 'std::runtime_error' what(): [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18008262 milliseconds before timing out. [E ProcessGroupNCCL.cpp:341] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data. To avoid this inconsistency, we are taking the entire process down. terminate called after throwing an instance of 'std::runtime_error' what(): [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=18000000) ran for 18008064 milliseconds before timing out. WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 81719 closing signal SIGTERM WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 81720 closing signal SIGTERM WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 81722 closing signal SIGTERM ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: -6) local_rank: 0 (pid: 81717) of binary: /usr/local/anaconda3/envs/CenterNet/bin/python Traceback (most recent call last): File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/launch.py", line 193, in <module> main() File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/launch.py", line 189, in main launch(args) File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/launch.py", line 174, in launch run(args) File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/run.py", line 710, in run elastic_launch( File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 131, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ====================================================== main.py FAILED ------------------------------------------------------ Failures: [1]: time : 2023-06-07_15:19:52 host : localhost rank : 1 (local_rank: 1) exitcode : -6 (pid: 81718) error_file: <N/A> traceback : Signal 6 (SIGABRT) received by PID 81718 [2]: time : 2023-06-07_15:19:52 host : localhost rank : 4 (local_rank: 4) exitcode : -6 (pid: 81721) error_file: <N/A> traceback : Signal 6 (SIGABRT) received by PID 81721 ------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2023-06-07_15:19:52 host : localhost rank : 0 (local_rank: 0) exitcode : -6 (pid: 81717) error_file: <N/A> traceback : Signal 6 (SIGABRT) received by PID 81717 ====================================================== (CenterNet) nvidia@SSADL3816:/data/ljw/seg_train_nfs/seg/source$ (CenterNet) nvidia@SSADL3816:/data/ljw/seg_train_nfs/seg/source$ sh ./train_qat_local_continue.sh /usr/local/anaconda3/envs/CenterNet/lib/python3.9/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated and will be removed in future. Use torchrun. Note that --use_env is set by default in torchrun. If your script expects `--local_rank` argument to be set, please change it to read from `os.environ['LOCAL_RANK']` instead. See https://pytorch.org/docs/stable/distributed.html#launch-utility for further instructions warnings.warn( WARNING:torch.distributed.run: ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test 2023-06-07 15:45:15.232 | INFO | quantization.quantize_lx:<module>:31 - ['/Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn'] 2023-06-07 15:45:15.232 | INFO | quantization.quantize_lx:<module>:31 - ['/Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn'] 2023-06-07 15:45:15.232 | INFO | quantization.quantize_lx:<module>:31 - ['/Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn'] 2023-06-07 15:45:15.232 | INFO | quantization.quantize_lx:<module>:31 - ['/Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn'] 2023-06-07 15:45:15.232 | INFO | quantization.quantize_lx:<module>:31 - ['/Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn'] 2023-06-07 15:45:15.233 | INFO | quantization.quantize_lx:<module>:31 - ['/Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn'] The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to The output will be saved to The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test The output will be saved to The output will be saved to /Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test Creating model... Creating model... Creating model... Creating model... Creating model... 2023-06-07 15:45:15.330 | INFO | nv_calib:run:148 - 1.10.2+cu111 2023-06-07 15:45:15.331 | INFO | nv_calib:run:148 - 1.10.2+cu111 2023-06-07 15:45:15.331 | INFO | nv_calib:run:149 - Parse... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:149 - Parse... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:148 - 1.10.2+cu111 2023-06-07 15:45:15.331 | INFO | nv_calib:run:148 - 1.10.2+cu111 2023-06-07 15:45:15.331 | INFO | nv_calib:run:156 - Init quan 3... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:156 - Init quan 1... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:148 - 1.10.2+cu111 2023-06-07 15:45:15.331 | INFO | nv_calib:run:149 - Parse... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:149 - Parse... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:149 - Parse... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:156 - Init quan 5... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:156 - Init quan 4... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:156 - Init quan 2... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:159 - Build QDQ model 1... 2023-06-07 15:45:15.331 | INFO | nv_calib:run:159 - Build QDQ model 3... 2023-06-07 15:45:15.331 | INFO | lib.models.model:create_model_quan:22 - create_model phase:train, qdq:True 2023-06-07 15:45:15.331 | INFO | lib.models.model:create_model_quan:22 - create_model phase:train, qdq:True 2023-06-07 15:45:15.332 | INFO | nv_calib:run:159 - Build QDQ model 4... 2023-06-07 15:45:15.332 | INFO | nv_calib:run:159 - Build QDQ model 2... 2023-06-07 15:45:15.332 | INFO | nv_calib:run:159 - Build QDQ model 5... 2023-06-07 15:45:15.332 | INFO | lib.models.model:create_model_quan:22 - create_model phase:train, qdq:True 2023-06-07 15:45:15.332 | INFO | lib.models.model:create_model_quan:22 - create_model phase:train, qdq:True 2023-06-07 15:45:15.332 | INFO | lib.models.model:create_model_quan:22 - create_model phase:train, qdq:True /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:285: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! inputs, amax.item() / bound, 0, /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:285: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! inputs, amax.item() / bound, 0, /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:285: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! inputs, amax.item() / bound, 0, /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:285: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! inputs, amax.item() / bound, 0, /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:285: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! inputs, amax.item() / bound, 0, /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:291: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! quant_dim = list(amax.shape).index(list(amax_sequeeze.shape)[0]) /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:291: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! quant_dim = list(amax.shape).index(list(amax_sequeeze.shape)[0]) /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:291: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! quant_dim = list(amax.shape).index(list(amax_sequeeze.shape)[0]) /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:291: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! quant_dim = list(amax.shape).index(list(amax_sequeeze.shape)[0]) /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:291: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! quant_dim = list(amax.shape).index(list(amax_sequeeze.shape)[0]) Namespace(task='lidarv5-tmp-local-shuffle-0527', local_rank=0, dataset='lidar128', test=False, load_model='/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth', resume=True, gpus=[0, 1, 2, 3, 4, 5], num_workers=112, not_cuda_benchmark=False, seed=317, print_iter=0, hide_data_time=False, save_all=True, metric='loss', vis_thresh=0.3, debugger_theme='white', arch='salsa', down_ratio=4, input_res=-1, input_h=-1, input_w=-1, input_c=16, lr=0.000125, num_epochs=600, batch_size=16, num_iters=-1, val_intervals=5, trainval=False, aug_lidar=0.8, ignore_index=10, align_size=100000, weight_decay=1e-05, exp_id='test', user_spec=True, qdq=True, onnx_out='lidarnet_seg_qat.onnx', fp32_ckpt_file='/Data/ljw/seg_train_nfs/seg/exp/lidarv5-tmp-local-shuffle-0527/test/model_last.pth', ptq_pth_file='', calib_dataset_path='', exec_calib=False, gpus_str='0,1,2,3,4,5', root_dir='/Data/ljw/seg_train_nfs/seg/source/lib/../..', data_dir='/Data/ljw/seg_train_nfs/seg/source/lib/../../data', exp_dir='/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527', save_dir='/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test', debug_dir='/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test/debug') Creating model... 2023-06-07 15:45:15.787 | INFO | nv_calib:run:148 - 1.10.2+cu111 2023-06-07 15:45:15.787 | INFO | nv_calib:run:149 - Parse... 2023-06-07 15:45:15.788 | INFO | nv_calib:run:156 - Init quan 0... 2023-06-07 15:45:15.788 | INFO | nv_calib:run:159 - Build QDQ model 0... 2023-06-07 15:45:15.789 | INFO | lib.models.model:create_model_quan:22 - create_model phase:train, qdq:True /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:285: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! inputs, amax.item() / bound, 0, /Data/ljw/seg_train_nfs/seg/pytorch-quantization_v2.1.0/pytorch_quantization/nn/modules/tensor_quantizer.py:291: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! quant_dim = list(amax.shape).index(list(amax_sequeeze.shape)[0]) 2023-06-07 15:45:28.237 | INFO | nv_calib:make_model:58 - checkpoint epoch:115 2023-06-07 15:45:28.239 | INFO | nv_calib:make_model:62 - checkpoint conv1.bias:tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) 2023-06-07 15:45:28.239 | INFO | nv_calib:make_model:63 - checkpoint conv2.bias:tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:28.240 | INFO | nv_calib:make_model:65 - checkpoint conv1._input_quantizer._amax:tensor([[1539.4375]]) 2023-06-07 15:45:28.240 | INFO | nv_calib:make_model:66 - checkpoint conv1._weight_quantizer._amax:tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]]) 2023-06-07 15:45:28.354 | INFO | nv_calib:make_model:58 - checkpoint epoch:115 2023-06-07 15:45:28.355 | INFO | nv_calib:make_model:62 - checkpoint conv1.bias:tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) 2023-06-07 15:45:28.356 | INFO | nv_calib:make_model:63 - checkpoint conv2.bias:tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:28.356 | INFO | nv_calib:make_model:65 - checkpoint conv1._input_quantizer._amax:tensor([[1539.4375]]) 2023-06-07 15:45:28.356 | INFO | nv_calib:make_model:66 - checkpoint conv1._weight_quantizer._amax:tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]]) 2023-06-07 15:45:28.398 | INFO | nv_calib:make_model:58 - checkpoint epoch:115 2023-06-07 15:45:28.399 | INFO | nv_calib:make_model:62 - checkpoint conv1.bias:tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) 2023-06-07 15:45:28.400 | INFO | nv_calib:make_model:63 - checkpoint conv2.bias:tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:28.400 | INFO | nv_calib:make_model:65 - checkpoint conv1._input_quantizer._amax:tensor([[1539.4375]]) 2023-06-07 15:45:28.401 | INFO | nv_calib:make_model:66 - checkpoint conv1._weight_quantizer._amax:tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]]) 2023-06-07 15:45:28.454 | INFO | nv_calib:make_model:58 - checkpoint epoch:115 2023-06-07 15:45:28.456 | INFO | nv_calib:make_model:62 - checkpoint conv1.bias:tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) 2023-06-07 15:45:28.456 | INFO | nv_calib:make_model:63 - checkpoint conv2.bias:tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:28.456 | INFO | nv_calib:make_model:65 - checkpoint conv1._input_quantizer._amax:tensor([[1539.4375]]) 2023-06-07 15:45:28.457 | INFO | nv_calib:make_model:66 - checkpoint conv1._weight_quantizer._amax:tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]]) 2023-06-07 15:45:28.508 | INFO | nv_calib:make_model:58 - checkpoint epoch:115 2023-06-07 15:45:28.509 | INFO | nv_calib:make_model:62 - checkpoint conv1.bias:tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) 2023-06-07 15:45:28.510 | INFO | nv_calib:make_model:63 - checkpoint conv2.bias:tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:28.510 | INFO | nv_calib:make_model:65 - checkpoint conv1._input_quantizer._amax:tensor([[1539.4375]]) 2023-06-07 15:45:28.511 | INFO | nv_calib:make_model:66 - checkpoint conv1._weight_quantizer._amax:tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]]) 2023-06-07 15:45:28.589 | INFO | nv_calib:make_model:58 - checkpoint epoch:115 2023-06-07 15:45:28.591 | INFO | nv_calib:make_model:62 - checkpoint conv1.bias:tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) 2023-06-07 15:45:28.592 | INFO | nv_calib:make_model:63 - checkpoint conv2.bias:tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:28.592 | INFO | nv_calib:make_model:65 - checkpoint conv1._input_quantizer._amax:tensor([[1539.4375]]) 2023-06-07 15:45:28.592 | INFO | nv_calib:make_model:66 - checkpoint conv1._weight_quantizer._amax:tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]]) 2023-06-07 15:45:32.433 | INFO | nv_calib:run:183 - Done Resumed optimizer with start lr:0.000106861630055177 @ start_epoch:115 Setting up data... 2023-06-07 15:45:32.608 | INFO | nv_calib:run:183 - Done Resumed optimizer with start lr:0.000106861630055177 @ start_epoch:115 Setting up data... 2023-06-07 15:45:32.636 | INFO | nv_calib:run:183 - Done Resumed optimizer with start lr:0.000106861630055177 @ start_epoch:115 Setting up data... 2023-06-07 15:45:32.692 | INFO | nv_calib:run:183 - Done Resumed optimizer with start lr:0.000106861630055177 @ start_epoch:115 Setting up data... 2023-06-07 15:45:32.700 | INFO | nv_calib:make_model:73 - epoch:115 conv1._input_quantizer tensor([[1539.4375]], device='cuda:0') conv1._weight_quantizer tensor([[0.5576, 0.5451, 0.3167, 0.3039, 0.4727, 0.4320, 0.1625, 0.4627, 0.3156, 0.3947, 0.5705, 0.6998, 0.5736, 0.6587, 0.5044, 0.5329, 0.3364, 0.6277, 0.7105, 0.4603, 0.2333, 0.2680, 0.4587, 0.2870, 0.3610, 0.3637, 0.3891, 0.7792, 0.3351, 0.3386, 0.1254, 0.8209]], device='cuda:0') conv1.bias tensor([[-4.1348e-02, 1.6472e-01, 3.2278e-02, -1.5598e-02, 4.7575e-02, -3.1791e-02, -6.7235e-40, 2.6458e-01, -1.3766e-01, -6.4600e-02, -4.6662e-02, 1.0827e-02, -1.4016e-01, 2.2446e-03, -8.2754e-02, -8.0155e-03, 7.9800e-03, -1.1467e-01, 1.5884e-01, -4.6665e-02, -1.7129e-01, -5.2869e-40, 5.0063e-03, -2.1632e-40, -4.1148e-02, 8.1584e-02, -9.4614e-02, -6.8896e-03, -1.0554e-01, 8.0332e-02, 4.3656e-01, 2.9243e-02]]) conv2._input_quantizer tensor([[883.1326]], device='cuda:0') conv2._weight_quantizer tensor([[0.0743, 0.0991, 0.0849, 0.0749, 0.1368, 0.0897, 0.1589, 0.1310, 0.1057, 0.0659, 0.1254, 0.0821, 0.1108, 0.1095, 0.1166, 0.0886, 0.1466, 0.0909, 0.1240, 0.0732, 0.0986, 0.0759, 0.0796, 0.1083, 0.2092, 0.1230, 0.0817, 0.1350, 0.0790, 0.0874, 0.0908, 0.0899]], device='cuda:0') conv2.bias tensor([[-6.9302e-40, -5.4245e-40, 6.1304e-40, 4.2021e-40, -1.7506e-40, 2.9957e-40, 3.1063e-41, -3.3235e-40, 3.8951e-40, -4.8229e-40, 2.6122e-40, 6.9386e-40, -1.6469e-40, 1.8031e-40, -5.7757e-40, 6.8225e-40, 7.6385e-40, -3.6489e-40, -5.1876e-40, -7.7881e-40, -5.7398e-40, -1.9782e-08, -5.0480e-40, 1.3298e-40, 2.8949e-07, -6.3881e-40, -5.9236e-40, 7.4507e-08, -7.1711e-40, 6.3068e-41, -3.9031e-40, 7.5782e-40]]) 2023-06-07 15:45:32.795 | INFO | nv_calib:run:183 - Done Resumed optimizer with start lr:0.000106861630055177 @ start_epoch:115 Setting up data... 2023-06-07 15:45:33.119 | INFO | nv_calib:run:183 - Done Resumed optimizer with start lr:0.000106861630055177 @ start_epoch:115 Setting up data... 2023-06-07 15:45:34.116 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 158735 train images 2023-06-07 15:45:34.116 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 158735 train images 2023-06-07 15:45:34.130 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 158735 train images 2023-06-07 15:45:34.134 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 158735 train images 2023-06-07 15:45:34.136 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 158735 train images 2023-06-07 15:45:34.141 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 158735 train images 2023-06-07 15:45:34.466 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 52281 val images 2023-06-07 15:45:34.471 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 52281 val images 2023-06-07 15:45:34.476 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 52281 val images 2023-06-07 15:45:34.480 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 52281 val images 2023-06-07 15:45:34.480 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 52281 val images 2023-06-07 15:45:34.480 | INFO | datasets.dataset.mini_data:__init__:45 - phase:train, loaded 52281 val images Starting training...save_dir:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test start_epoch:116, num_epochs:600 Starting training...save_dir:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test start_epoch:116, num_epochs:600 Starting training...save_dir:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test start_epoch:116, num_epochs:600 Starting training...save_dir:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test start_epoch:116, num_epochs:600 Starting training...save_dir:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test start_epoch:116, num_epochs:600 Starting training...save_dir:/Data/ljw/seg_train_nfs/seg/source/lib/../../exp/lidarv5-tmp-local-shuffle-0527/test start_epoch:116, num_epochs:600 [W reducer.cpp:1303] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [W reducer.cpp:1303] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [W reducer.cpp:1303] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [W reducer.cpp:1303] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [W reducer.cpp:1303] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [W reducer.cpp:1303] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) lidarv5-tmp-local-shuffle-0527/default |## | train: [116][146/1653]|Tot: 0:10:04 |ETA: 0:52:18 |loss 0.2401 |Data 0.002s(1.697s) |Net 4.110s